Preloader

Production technology and applications of honeycomb films

  • 1.

    Campbell M, Sharp DN, Harrison MT, Denning RG, Turberfield AJ. Fabrication of photonic crystals for the visible spectrum by holographic lithography. Nature. 2000;404:53–6.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 2.

    Hu XB, Li GT, Li MH, Huang J, Li Y, Gao YB, et al. Ultrasensitive specific stimulant assay based on molecularly imprinted photonic hydrogels. Adv Funct Mater. 2008;18:575–83.

    CAS 
    Article 

    Google Scholar 

  • 3.

    Gates B, Yin YD, Xia YN. Fabrication and characterization of porous membranes with highly ordered three-dimensional periodic structures. Chem Mater. 1999;11:2827–36.

    CAS 
    Article 

    Google Scholar 

  • 4.

    Erdogan B, Song LL, Wilson JN, Park JO, Srinivasarao M, Bunz UHF. Permanent bubble arrays from a cross-linked poly (para- phenyleneethynylene): picoliter holes without microfabrication. J Am Chem Soc. 2004;126:3678–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Yabu H, Takebayashi M, Tanaka M, Shimomura M. Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures. Langmuir. 2005;21:3235–7.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Fukuhira Y, Ito M, Kaneko H, Sumi Y, Tanaka M, Yamamoto S, et al. Prevention of postoperative adhesions by honeycomb-patterned poly(lactide) film in a rat experimental model. J Biomed Mater PART B Appl Biomater. 2008;86:353–9.

    Article 
    CAS 

    Google Scholar 

  • 7.

    Ishihata H, Tanaka M, Iwata N, Ara M, Shimonishi M, Nagamine M, et al. Proliferation of periodontal ligament cells on biodegradable honeycomb film scaffold with unified micropore organization. J Biomech Sci Eng. 2010;10:252–61.

    Article 

    Google Scholar 

  • 8.

    Schmid H, Michel B. Siloxane polymers for high-resolution, high-accuracy soft lithography. Macromolecules. 2000;33:3042–9.

    CAS 
    Article 

    Google Scholar 

  • 9.

    Aitken J. Breath figures. Proc R Soc Edinb. 1895;20:94–7.

    Article 

    Google Scholar 

  • 10.

    Rayleigh L. Breath figures. Nature. 1911;86:416–7.

    Article 

    Google Scholar 

  • 11.

    Terada T. Physical problems in everyday life. In: Komiya T, editor. Iwanami bunko. Terada Torahiko collected essays Vol. 3 (Iwanamibunko) Tokyo: Iwanami Shoten, Publishers; 1948. p. 15–22.

  • 12.

    Widawski G, Rawiso M, François B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature. 1994;369:387–9.

    CAS 
    Article 

    Google Scholar 

  • 13.

    Maruyama N, Koito T, Nishida J, Sawadaishi T, Cieren X, Ijiro K, et al. Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films. 1998;327-329:854–6.

    CAS 
    Article 

    Google Scholar 

  • 14.

    Stenzel MH. Formation of regular honeycomb-patterned porous film by self-organization. Aust J Chem. 2002;55:239–43.

    CAS 
    Article 

    Google Scholar 

  • 15.

    Bunz UHF. Breath figures as a dynamic templating method for polymers and nanomaterials. Adv Mater. 2006;18:973–89.

    CAS 
    Article 

    Google Scholar 

  • 16.

    Hoa MLK, Lu M, Zhang Y. Preparation of porous materials with ordered hole structure. Adv Colloid Interface Sci. 2006;121:9–23.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Stenzel MH, Barner-Kowollik C, Davis TP. Formation of honeycomb‐structured, porous films via breath figures with different polymer architectures. J Polym Sci, Part A: Polym Chem. 2006;44:2363–75.

    CAS 
    Article 

    Google Scholar 

  • 18.

    Ma HM, Hao JC. Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings. Chem Soc Rev. 2011;40:5457–71.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 19.

    Escale P, Rubatat L, Billon L, Save M. Recent advances in honeycomb-structured porous polymer films prepared via breath figures. Eur Polym J. 2012;48:1001–25.

    CAS 
    Article 

    Google Scholar 

  • 20.

    Hernandez-Guerrero M, Stenzel MH. Honeycomb structured polymer films via breath figures. Polym Chem. 2012;3:563–77.

    CAS 
    Article 

    Google Scholar 

  • 21.

    Bai H, Du C, Zhang AJ, Li L. Breath figure arrays: unconventional fabrications, functionalizations, and applications. Angew Chem, Int Ed. 2013;52:12240–55.

    CAS 
    Article 

    Google Scholar 

  • 22.

    Muñoz-Bonilla A, Fernández-García M, Rodríguez-Hernández J. Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Prog Polym Sci. 2014;39:510–54.

    Article 
    CAS 

    Google Scholar 

  • 23.

    Wan LS, Zhu LW, Ou Y, Xu ZK. Multiple interfaces in self-assembled breath figures. Chem Commun. 2014;50:4024–39.

    CAS 
    Article 

    Google Scholar 

  • 24.

    Zhang A, Bai H, Li L. Breath figure: a nature-inspired preparation method for ordered porous films. Chem Rev. 2015;115:9801–68.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 25.

    Yabu H. Fabrication of honeycomb films by the breath figure technique and their applications. Sci Tech Adv Mater. 2018;19:802–22.

    CAS 
    Article 

    Google Scholar 

  • 26.

    Shimomura M, Sawadaishi T. Bottom-up strategy of materials fabrication: a new trend in nanotechnology of soft materials. Curr.Opin. Colloid Interface Sci. 2001;6:11–6.

  • 27.

    Iwanaga H, Shiratsuchi K, Yamazaki H. Fujifilm Research & Development. No. 54, 38–42. Fujifilm Value from Innovation;2009.

  • 28.

    Elder KR, Katakowski M, Haataja M, Grant M. Modeling elasticity in crystal growth. Phys Rev Lett. 2002;88:245701-1–245701-4.

    Article 
    CAS 

    Google Scholar 

  • 29.

    Elder KR, Grant M. Modeling elastic and plastic deformation in nonequilibrium processing using phasefield crystals. Phys Rev E. 2004;70:051605-1–-051605-18.

    Article 
    CAS 

    Google Scholar 

  • 30.

    Kohashi S, Takaki T, Nishida H. Numerical simulation of self-organized honeycomb-pattern; Ascht 2015 The Asian Symposium on Computational Heat Transfer and Fluid Flow; 2015 June 21–24. Busan, Korea.

  • 31.

    Nishida H, Kohashi S, Tanaka M. Construction of seamless immersed boundary phase-field method. Comput Fluids. 2018;164:41–9.

    Article 

    Google Scholar 

  • 32.

    Nishikawa T, Nishida J, Ookura R, Nishimura S, Wada S, Karino T, Shimomura M. Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates. Mater Sci Eng. 1999;C8-9:495–500.

    Article 

    Google Scholar 

  • 33.

    Nishikawa T, Nonomura M, Arai K, Hayashi J, Sawadaishi T, Nishiura Y, et al. Micropatterns based on deformation of a viscoelastic honeycomb mesh. Langmuir. 2003;19:6193–201.

    CAS 
    Article 

    Google Scholar 

  • 34.

    Yamazaki H, Ito K, Yabu H, Shimomura M. Formation and control of line defects caused by tectonics of water droplet arrays during self-organized honeycomb-patterned polymer film formation. Soft Matter. 2014;10:2741–7.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Ito K, Yamazaki H. Method for production of honeycomb structure film. Japan patent no. 5405374. 2013.

  • 36.

    Tanaka M, Shimomura M, Sakaino Y, Ito T, Terashima K.Method for manufacturring blood filtration film, and filtration method. Japan patent no. 2006–194908 2006.

  • 37.

    Yamazaki H, Ito K, Shimomura M, Yabu H. Technological prospect and current industrial trend of biomimetics, Ch. 3. Tokyo: CMC Publishing, 2016. p. 41–50.

  • 38.

    Tanaka M, Shimomura M, Sakaino Y, Ito T, Ishii N. Covered stent. Japan patent no. 4526589. 2010.

  • 39.

    Tanaka M, Shimomura M, Sakaino Y, Ito T, Toyokawa S. Stent for digestive system. Japan patent no. 4512351. 2010.

  • 40.

    Fukuhira Y, Ito M, Kaneko H, Sumi Y, Tanaka M, Yamamoto S, et al. Prevention of postoperative adhesions by a novel honeycomb-patterned poly(lactide) film in a rat experimental model. Biomed Mater Res B Appl Biomater. 2008;86B:353–9.

  • 41.

    Okuda T, Higashide T, Fukuhira Y, Sumi Y, Shimomura M, Sugiyama K. J Glaucoma. 2009;18:220–6.

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Sato K, Tanaka M, Hasebe K, Takebayashi M, Nishikawa K, Kawai T, et al. Preparation of the honeycomb patterned porous film of biodegradable polymer for tissue engineering scaffolds. Int J Nanosci. 2002;1:689–93.

    CAS 
    Article 

    Google Scholar 

  • 43.

    Lin RZ, Chang HY. Recent advances in three-dimensional multicellularspheroid culture for biomedical research. Biotechnol J. 2008;3:1172–84.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 44.

    Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids. an underestimated tool is catching up again. J Biotechnol. 2010;148:3–15.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 45.

    Kinney MA, Sargent CY, McDevitt TC. The multiparametric effects of hydrodynamic environments on stem cell culture. Tissue Eng Part B. 2011;17:249–62.

    Article 

    Google Scholar 

  • 46.

    Koide N, Sakaguchi K, Koide Y, Asano K, Kawaguchi M, Matsushima H, et al. Formation of multicellularspheroids composed of adult rat hepatocytes in dishes with positively charged surfaces and under other nonadherente nvironments. Exp Cell Res. 1990;186:227–35.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Tong J-Z, Lagausie P-D, Furlan V, Cresteil T, Bernard O, Alvarez F. Long-term culture of adult rat hepatocyte spheroids. Exp Cell Res. 1992;200:326–32.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 48.

    Abu-Absi SF, Friend JR, Hansen LK, Hu WS. Structural polarity and functional bile canaliculi in rat hepatocyte spheroids. Exp Cell Res. 2002;274:56–67.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Tsuruma A, Tanaka M, Fukushima N, Shimomura M. Morphological changes of neurons in Self-organized honeycomb-patterned films. e-J Surf Sci Nanotechnol. 2005;3:159–64.

    CAS 
    Article 

    Google Scholar 

  • 50.

    Morita Y, Yamamoto S, Yabu H, Ito E, Honmou O, Ijiro K, et al. Response of mesenchymal stem cells from rat adult bone marrow to honeycomb-patterned porous polymer films. J Surf Sci Soc Jpn. 2010;31:392–9.

    CAS 
    Article 

    Google Scholar 

  • 51.

    Mohr JC, de Pablo JJ, Palecek SP. 3-D microwell culture of human embryonic stem cells. Biomaterials. 2006;7:6032–42.

    Article 
    CAS 

    Google Scholar 

  • 52.

    Sakai Y, Nakazawa K. Technique for the control of spheroid diameter using microfabricated chips. Acta Biomater. 2007;3:1033–40.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Sakai Y, Yoshida S, Yoshiura Y, Mori R, Tamura T, Yahiro K, et al. Effect of microwell chipstructure on cell microsphere production of various animal cells. J Biosci Bioeng. 2010;110:223–9.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 54.

    Nakazawa K, Yoshiura Y, Koga H, Sakai Y. Characterization of mouse embryoid bodies cultured on microwell chips with different well sizes. J Biosci Bioeng. 2013;116:628–33.

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Yamazaki H, Yabu H, Shimomura M, Nakazawa K, et al. Micropatterned culture of HepG2 spheroids using microwell chip with honeycomb-patterned polymer film. J Biosci Bioeng. 2014;118:455–60.

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 56.

    Ito K, Kakinuma C, Hikimoto D, Mima S, Nevile CM, Sundback CA. Blood vessel model. U.S. patent no. 20200110075.2020.

  • 57.

    Miyoshi H, Naito T, Suehiro T, Hikimoto D, Nishino M, Oba T, et al. Development of blood vessel model by organ-on-chip technology and its application for evaluation of drug induced vascular injury. Poster presented at the 32rd Annual Meeting of the Japanese Society for Alternatives to Animal Experiments. Nov 2019; Tsukuba, Japan.

  • Source link