Preloader

Enhancement of Campylobacter hepaticus culturing to facilitate downstream applications

  • 1.

    Van, T.T.H., Elshagmani, E., Gor, M.C., Scott, P.C. & Moore, R.J. Campylobacter hepaticus sp. nov., isolated from chickens with spotty liver disease. Int. J. Syst. Evol. Microbiol. 66, 4518–4524. https://doi.org/10.1099/ijsem.0.001383 (2016).

  • 2.

    Crawshaw, T. R. et al. Isolation of a novel thermophilic Campylobacter from cases of spotty liver disease in laying hens and experimental reproduction of infection and microscopic pathology. Vet. Microbiol. 179, 315–321. https://doi.org/10.1016/j.vetmic.2015.06.008 (2015).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Gregory, M., Klein, B., Sahin, O. & Girgis, G. Isolation and characterization of Campylobacter hepaticus from layer chickens with spotty liver disease in the United States. Avian. Dis. 62, 78–85. https://doi.org/10.1637/11752-092017-Reg.1 (2018).

    Article 

    Google Scholar 

  • 4.

    Crawshaw, T. R. et al. Isolation of Campylobacter hepaticus from free-range poultry with spotty liver disease in New Zealand. N. Z. Vet. J. 69, 58–64. https://doi.org/10.1080/00480169.2020.1801532 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 5.

    Grimes, T. & Reece, R. Spotty liver disease—An emerging disease in free-range egg layers in Australia. in Proceedings of the Sixtieth Western Poultry Disease Conference. 53–56 (2011).

  • 6.

    Khan, I. U. H., Hill, S., Nowak, E. & Edge, T. A. Effect of incubation temperature on the detection of thermophilic Campylobacter species from freshwater beaches, nearby wastewater effluents, and bird fecal droppings. Appl. Environ. Microbiol. 79, 7639–7645. https://doi.org/10.1128/AEM.02324-13 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Kim, J. et al. An improved culture method for selective isolation of Campylobacter jejuni from wastewater. Front. Microbiol. 7, 1345. https://doi.org/10.3389/fmicb.2016.01345 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Ismail, Y., Lee, H., Riordan, S. M., Grimm, M. C. & Zhang, L. The effects of oral and enteric Campylobacter concisus strains on expression of TLR4, MD-2, TLR2, TLR5 and COX-2 in HT-29 cells. PLoS ONE 8, e56888. https://doi.org/10.1371/journal.pone.0056888 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Reilly, S. S. & Gilliand, S. E. Improved culturing techniques for Campylobacter. J. Food Sci. 68, 2752–2757 (2003).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Van, T. T. H. et al. Induction of spotty liver disease in layer hens by infection with Campylobacter hepaticus. Vet. Microbiol. 199, 85–90. https://doi.org/10.1016/j.vetmic.2016.12.033 (2017).

    Article 
    PubMed 

    Google Scholar 

  • 11.

    Van, T. T. H. et al. Survival mechanisms of Campylobacter hepaticus identified by genomic analysis and comparative transcriptomic analysis of in vivo and in vitro derived bacteria. Front. Microbiol. 10, 107–107. https://doi.org/10.3389/fmicb.2019.00107 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Aziz, R. K. et al. The RAST server: Rapid annotations using subsystems technology. BMC Genomics 9, 75. https://doi.org/10.1186/1471-2164-9-75 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Kanehisa, M. & Goto, S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. https://doi.org/10.1093/nar/28.1.27 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Alazzam, B., Bonnassie-Rouxin, S., Dufour, V. & Ermel, G. MCLMAN, a new minimal medium for Campylobacter jejuni NCTC 11168. Res. Microbiol 162, 173–179. https://doi.org/10.1016/j.resmic.2010.09.024 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Velayudhan, J. & Kelly, D. J. Analysis of gluconeogenic and anaplerotic enzymes in Campylobacter jejuni: an essential role for phosphoenolpyruvate carboxykinase. Microbiology 148, 685–694. https://doi.org/10.1099/00221287-148-3-685 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 16.

    Kawanishi, T. et al. New detection systems of bacteria using highly selective media designed by SMART: Selective medium-design algorithm restricted by two constraints. PLoS ONE 6, e16512. https://doi.org/10.1371/journal.pone.0016512 (2011).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Salahudeen, A. K., Clark, E. C. & Nath, K. A. Hydrogen peroxide-induced renal injury. A protective role for pyruvate in vitro and in vivo. J. Clin. Invest. 88, 1886–1893. https://doi.org/10.1172/jci115511 (1991).

  • 18.

    Kim, J. C., Oh, E., Kim, J. & Jeon, B. Regulation of oxidative stress resistance in Campylobacter jejuni, a microaerophilic foodborne pathogen. Front. Microbiol. 6, 751. https://doi.org/10.3389/fmicb.2015.00751 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Benoni, R. et al. Modulation of Escherichia coli serine acetyltransferase catalytic activity in the cysteine synthase complex. FEBS Lett. 591, 1212–1224. https://doi.org/10.1002/1873-3468.12630 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 20.

    Vorwerk, H. et al. Utilization of host-derived cysteine-containing peptides overcomes the restricted sulphur metabolism of Campylobacter jejuni. Mol. Microbiol. 93, 1224–1245. https://doi.org/10.1111/mmi.12732 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Dickgiesser, N. & Czylwik, D. Chemically defined media for auxotyping of Campylobacter jejuni. Zentralbl. Bakteriol. Mikrobiol. Hyg. A 260, 57–64. https://doi.org/10.1016/S0176-6724(85)80098-5 (1985).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 22.

    Chandrashekhar, K., Kassem, I. I. & Rajashekara, G. Campylobacter jejuni transducer like proteins: Chemotaxis and beyond. Gut Microbes 8, 323–334. https://doi.org/10.1080/19490976.2017.1279380 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Li, Z. et al. Methyl-accepting chemotaxis proteins 3 and 4 are responsible for Campylobacter jejuni chemotaxis and jejuna colonization in mice in response to sodium deoxycholate. J. Med. Microbiol. 63, 343–354. https://doi.org/10.1099/jmm.0.068023-0 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Vegge, C. S., Brøndsted, L., Li, Y.-P., Bang, D. D. & Ingmer, H. Energy taxis drives Campylobacter jejuni toward the most favorable conditions for growth. Appl. Environ. Microbiol. 75, 5308–5314. https://doi.org/10.1128/aem.00287-09 (2009).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Seong, P. N. et al. Characterization of chicken by-products by mean of proximate and nutritional compositions. Korean. J. Food. Sci. Anim. Resour. 35, 179–188. https://doi.org/10.5851/kosfa.2015.35.2.179 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Visscher, C. et al. Influence of a specific amino acid pattern in the diet on the course of an experimental Campylobacter jejuni infection in broilers. Poult. Sci. 97, 4020–4030. https://doi.org/10.3382/ps/pey276 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Adedokun, S. A., Adeola, O., Parsons, C. M., Lilburn, M. S. & Applegate, T. J. Factors affecting endogenous amino acid flow in chickens and the need for consistency in methodology. Poult. Sci. 90, 1737–1748. https://doi.org/10.3382/ps.2010-01245 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Hoffman, P. S., George, H. A., Krieg, N. R. & Smibert, R. M. Studies of the microaerophilic nature of Campylobacter fetus subsp. jejuni. II. Role of exogenous superoxide anions and hydrogen peroxide. Can. J. Microbiol. 25, 8–16. https://doi.org/10.1139/m79-002 (1979).

  • 29.

    Karmali, M. A. et al. Evaluation of a blood-free, charcoal-based, selective medium for the isolation of Campylobacter organisms from feces. J. Clin. Microbiol. 23, 456–459. https://doi.org/10.1128/JCM.23.3.456-459.1986 (1986).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Mendz, G. L., Ball, G. E. & Meek, D. J. Pyruvate metabolism in Campylobacter spp. Biochim. Biophys. Acta 1334, 291–302. https://doi.org/10.1016/S0304-4165(96)00107-9 (1997).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Verhoeff-Bakkenes, L., Arends, A. P., Snoep, J. L., Zwietering, M. H. & de Jonge, R. Pyruvate relieves the necessity of high induction levels of catalase and enables Campylobacter jejuni to grow under fully aerobic conditions. Lett. Appl. Microbiol. 46, 377–382. https://doi.org/10.1111/j.1472-765X.2008.02326.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Reilly, S. S. & Gilliland, S. E. Improved culturing techniques for Campylobacter. J. Food Sci. 68, 2752–2757. https://doi.org/10.1111/j.1365-2621.2003.tb05800.x (2003).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Davis, L. & DiRita, V. Growth and laboratory maintenance of Campylobacter jejuni. Curr. Protoc. Microbiol. 8(8A), 1 1–8A 1 7. https://doi.org/10.1002/9780471729259.mc08a01s10 (2008).

  • 34.

    Secker, D., Tompkins, D. & Alderson, G. Gas-permeable lifecell tissue culture flasks give improved growth of Helicobacter pylori in a liquid medium. J. Clin. Microbiol. 29, 1060–1061. https://doi.org/10.1128/JCM.29.5.1060-1061.1991 (1991).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Rollins, D. M., Coolbaugh, J. C., Walker, R. I. & Weiss, E. Biphasic culture system for rapid Campylobacter cultivation. Appl. Environ. Microbiol. 45, 284–289. https://doi.org/10.1128/AEM.45.1.284-289.1983 (1983).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 36.

    Shadowen, R. D. & Sciortino, C. V. Improved growth of Campylobacter pylori in a biphasic system. J. Clin. Microbiol. 27, 1744–1747. https://doi.org/10.1128/JCM.27.8.1744-1747.1989 (1989).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Sellars, M. J., Hall, S. J. & Kelly, D. J. Growth of Campylobacter jejuni supported by respiration of fumarate, nitrate, nitrite, trimethylamine-n-oxide, or dimethyl sulfoxide requires oxygen. J. Bacteriol. 184, 4187–4196. https://doi.org/10.1128/jb.184.15.4187-4196.2002 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Kaakoush, N. O., Miller, W. G., De Reuse, H. & Mendz, G. L. Oxygen requirement and tolerance of Campylobacter jejuni. Res. Microbiol. 158, 644–650. https://doi.org/10.1016/j.resmic.2007.07.009 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 39.

    Ghaffar, N., Connerton, P. & Connerton, I. Filamentation of Campylobacter in broth cultures. Front. Microbiol. 6, 657. https://doi.org/10.3389/fmicb.2015.00657 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Wright, J. et al. Metabolite and transcriptome analysis of Campylobacter jejuni in vitro growth reveals a stationary-phase physiological switch. Microbiology 155, 80–94. https://doi.org/10.1099/mic.0.021790-0 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 41.

    Skirrow, M. B. Encyclopedia of Food Sciences and Nutrition. 2nd Edn. (ed. Benjamin Caballero) 779–786 (Academic Press, 2003).

  • 42.

    King, Y. T. & Chen, T. C. Chemical and physical characteristics of chicken livers following adrenocorticotropic hormone-induced stress. J. Food. Sci. 63, 589–591. https://doi.org/10.1111/j.1365-2621.1998.tb15791.x (1998).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Mabelebele, M., John, A., Ng’ambi, J., Norris, D. & Ginindza, M. Comparison of gastrointestinal tracts and pH values of digestive organs of Ross 308 broiler and indigenous Venda chickens fed the same diet. Asian. J. Anim. Vet. Adv. 9, 71–76. https://doi.org/10.3923/ajava.2014.71.76 (2014).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Ciurescu, G., Vasilachi, A., Habeanu, M. & Dragomir, C. Effects of dietary lentil seeds inclusion on performance, carcass characteristics and cecal pH of broiler chickens. Indian J. Anim. Sci. 87, 1130–1134 (2017).

    CAS 

    Google Scholar 

  • 45.

    Zaefarian, F., Abdollahi, M. R., Cowieson, A. & Ravindran, V. Avian liver: The forgotten organ. Animals (Basel) 9, 63. https://doi.org/10.3390/ani9020063 (2019).

    Article 

    Google Scholar 

  • 46.

    Bolzani, R., Ruggeri, F. & Olivo, O. M. Average normal temperature of the chicken in the morning and after 1–2 days of fasting. Boll. Soc. Ital. Biol. Sper. 55, 1618–1622 (1979).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Aroori, S. V., Cogan, T. A. & Humphrey, T. J. The effect of growth temperature on the pathogenicity of Campylobacter. Curr. Microbiol. 67, 333–340. https://doi.org/10.1007/s00284-013-0370-1 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Kim, S. S. et al. The effect of the repeated subcultures of Helicobacter pylori on adhesion, motility, cytotoxicity, and gastric inflammation. J. Korean. Med. Sci. 17, 302–306. https://doi.org/10.3346/jkms.2002.17.3.302 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucleic Acids Res. 42, 206–214. https://doi.org/10.1093/nar/gkt1226 (2014).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Altschul, S. F. et al. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402. https://doi.org/10.1093/nar/25.17.3389 (1997).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Phung, C. et al. Campylobacter hepaticus, the cause of Spotty Liver Disease in chickens: Transmission and routes of infection. Front. Vet. Sci. 6, 505. https://doi.org/10.3389/fvets.2019.00505 (2019).

    Article 
    PubMed 

    Google Scholar 

  • Source link