Dhami, N. K., Reddy, M. S. & Mukherjee, M. S. Biomineralization of calcium carbonates and their engineered applications: A review. Front. Microbiol. 4, 1–14 (2013).
Google Scholar
Stocks-Fischer, S., Galinat, J. K. & Bang, S. S. Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31, 1563–1571 (1999).
Google Scholar
Dejong, J. T., Mortensen, B. M., Martinez, B. C. & Nelson, D. C. Bio-mediated soil improvement. Ecol. Eng. 36, 197–210 (2010).
Google Scholar
Ferris, F. G., Phoenix, V., Fujita, Y. & Smith, R. W. Kinetics of calcite precipitation induced by ureolytic bacteria at 10 to 20°C in artificial groundwater. Geochim. Cosmochim. Acta 68, 1701–1710 (2004).
Google Scholar
Fujita, Y., Grant Ferris, F., Daniel Lawson, R., Colwell, F. S. & Smith, R. W. Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiol. J. 17, 305–318 (2000).
Google Scholar
Kumari, D., Qian, X. Y., Pan, X., Achal, V. & Li, Q. Microbially-induced carbonate precipitation for immobilization of toxic metals. Adv. Appl. Microbiol. 94, 79–108 (2016).
Google Scholar
Wu, J., Wang, X. B., Wang, H. F. & Zeng, R. J. Microbially induced calcium carbonate precipitation driven by ureolysis to enhance oil recovery. RSC Adv. 7, 37382–37391 (2017).
Google Scholar
Ramachandran, S. K., Ramakrishnan, V. & Bang, S. S. Remediation of concrete using micro-organisms. ACI Mater. J. 98, 3–9 (2001).
Google Scholar
Van Tittelboom, K., De Belie, N., De Muynck, W. & Verstraete, W. Use of bacteria to repair cracks in concrete. Cem. Concr. Res. 40, 157–166 (2010).
Google Scholar
Mitchell, A. C., Dideriksen, K., Spangler, L. H., Cunningham, A. B. & Gerlach, R. Microbially enhanced carbon capture and storage by mineral-trapping and solubility-trapping. Environ. Sci. Technol. 44, 5270–5276 (2010).
Google Scholar
Phillips, A. J. et al. Engineered applications of ureolytic biomineralization: A review. Biofouling 29, 715–733 (2013).
Google Scholar
Van Paassen, L. A., Ghose, R., van der Linden, T. J. M., van der Star, W. R. L. & van Loosdrecht, M. C. M. Quantifying biomediated ground improvement by ureolysis: Large-scale biogrout experiment. J. Geotech. Geoenviron. Eng. 136, 1721–1728 (2010).
Google Scholar
Whiffin, V. S., van Paassen, L. A. & Harkes, M. P. Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol. J. 24, 417–423 (2007).
Google Scholar
Zhang, J. L. et al. Screening of bacteria for self-healing of concrete cracks and optimization of the microbial calcium precipitation process. Appl. Microbiol. Biotechnol. 100, 6661–6670 (2016).
Google Scholar
Mortensen, B. M., Haber, M. J., DeJong, J. T., Caslake, L. F. & Nelson, D. C. Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol. 111, 338–349 (2011).
Google Scholar
Martinez, B. C. et al. Experimental optimization of microbial-induced carbonate precipitation for soil improvement. J. Geotech. Geoenviron. Eng. 139, 587–598 (2013).
Google Scholar
Soon, N. W., Lee, L. M., Khun, T. C. & Ling, H. S. Factors affecting improvement in engineering properties of residual soil through microbial-induced calcite precipitation. Artic. J. Geotech. Geoenviron. Eng. 140, 04014006 (2014).
Google Scholar
Zhao, Q. et al. Factors affecting improvement of engineering properties of MICP-treated soil catalyzed by bacteria and urease. J. Mater. Civ. Eng. 26, 04014094 (2014).
Google Scholar
Oral, Ç. M. & Ercan, B. Influence of pH on morphology, size and polymorph of room temperature synthesized calcium carbonate particles. Powder Technol. 339, 781–788 (2018).
Google Scholar
Li, M., Wen, K., Li, Y. & Zhu, L. Impact of oxygen availability on microbially induced calcite precipitation (MICP) treatment. Geomicrobiol. J. 35, 15–22 (2018).
Google Scholar
Peng, J. & Liu, Z. Influence of temperature on microbially induced calcium carbonate precipitation for soil treatment. PLoS ONE 14, e0218396 (2019).
Google Scholar
Wen, K., Li, Y., Amini, F. & Li, L. Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate. Acta Geotech. 15, 17–27 (2020).
Google Scholar
Okwadha, G. D. O. & Li, J. Optimum conditions for microbial carbonate precipitation. Chemosphere 81, 1143–1148 (2010).
Google Scholar
Lauchnor, E. G., Topp, D. M., Parker, A. E. & Gerlach, R. Whole cell kinetics of ureolysis by Sporosarcina pasteurii. J. Appl. Microbiol. 118, 1321–1332 (2015).
Google Scholar
Mitchell, A. C. et al. Kinetics of calcite precipitation by ureolytic bacteria under aerobic and anaerobic conditions. Biogeosciences 16, 2147–2161 (2019).
Google Scholar
Heveran, C. M. et al. Engineered ureolytic microorganisms can tailor the morphology and nanomechanical properties of microbial-precipitated calcium carbonate. Sci. Rep. 9, 1–13 (2019).
Google Scholar
Mitchell, A. C. & GrantFerris, F. The influence of Bacillus pasteurii on the nucleation and growth of calcium carbonate. Geomicrobiol. J. 23, 213–226 (2006).
Google Scholar
Hammes, F., Boon, N., De Villiers, J., Verstraete, W. & Siciliano, S. D. Strain-specific ureolytic microbial calcium carbonate precipitation. Appl. Environ. Microbiol. 69, 4901–4909 (2003).
Google Scholar
Rodriguez-Navarro, C., Jimenez-Lopez, C., Rodriguez-Navarro, A., Gonzalez-Muñoz, M. T. & Rodriguez-Gallego, M. Bacterially mediated mineralization of vaterite. Geochim. Cosmochim. Acta 71, 1197–1213 (2007).
Google Scholar
Chen, L. et al. Bacteria-mediated synthesis of metal carbonate minerals with unusual morphologies and structures. Cryst. Growth Des. 9, 743–754 (2009).
Google Scholar
Dhami, N. K., Mukherjee, A. & Reddy, M. S. Micrographical, mineralogical and nano-mechanical characterisation of microbial carbonates from urease and carbonic anhydrase producing bacteria. Ecol. Eng. 94, 443–454 (2016).
Google Scholar
Burbank, M. B., Weaver, T. J., Green, T. L., Williams, B. & Crawford, R. L. Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol. J. 28, 301–312 (2011).
Google Scholar
Gomez, M. G. et al. Field-scale bio-cementation tests to improve sands. Proc. Inst. Civ. Eng. Ground Improve. 168, 206–216 (2015).
Google Scholar
Gomez, M. G. et al. Large-scale comparison of bioaugmentation and biostimulation approaches for biocementation of sands. J. Geotech. Geoenviron. Eng. 143, 04016124 (2017).
Google Scholar
Tobler, D. J. et al. Comparison of rates of ureolysis between Sporosarcina pasteurii and an indigenous groundwater community under conditions required to precipitate large volumes of calcite. Geochim. Cosmochim. Acta 75, 3290–3301 (2011).
Google Scholar
Gomez, M. G., Graddy, C. M. R., Dejong, J. T. & Nelson, D. C. Biogeochemical changes during bio-cementation mediated by stimulated and augmented ureolytic microorganisms. Sci. Rep. 9, 1–15 (2019).
Dhami, N. K., Alsubhi, W. R., Watkin, E. & Mukherjee, A. Bacterial community dynamics and biocement formation during stimulation and augmentation: Implications for soil consolidation. Front. Microbiol. 8, 1267 (2017).
Google Scholar
Raveh-Amit, H. & Tsesarsky, M. Biostimulation in desert soils for microbial-induced calcite precipitation. Appl. Sci. 10, 2905 (2020).
Google Scholar
Cuthbert, M. O. et al. Controls on the rate of ureolysis and the morphology of carbonate precipitated by S. pasteurii biofilms and limits due to bacterial encapsulation. Ecol. Eng. 41, 32–40 (2012).
Google Scholar
Gomez, M. G., DeJong, J. T., Anderson, C. M., Nelson, D. C. & Graddy, C. M. Large-scale bio-cementation improvement of sands. in Geotechnical and Structural Engineering Congress 2016—Proceedings of the Joint Geotechnical and Structural Engineering Congress 2016. 941–949. (American Society of Civil Engineers, 2016).
Hammes, F. & Verstraete, W. Key roles of pH and calcium metabolism in microbial carbonate precipitation. Rev. Environ. Sci. Biotechnol. (2002).
Gomez, M. G., Graddy, C. M. R., DeJong, J. T., Nelson, D. C. & Tsesarsky, M. Stimulation of native microorganisms for biocementation in samples recovered from field-scale treatment depths. J. Geotech. Geoenviron. Eng. 144, 04017098 (2018).
Google Scholar
Bachmeier, K. L., Williams, A. E., Warmington, J. R. & Bang, S. S. Urease activity in microbiologically-induced calcite precipitation. J. Biotechnol. 93, 171–181 (2002).
Google Scholar
Okyay, T. O. & Rodrigues, D. F. Optimized carbonate micro-particle production by Sporosarcina pasteurii using response surface methodology. Ecol. Eng. 62, 168–174 (2014).
Google Scholar
Chekroun, K. B. et al. Precipitation and growth morphology of calcium carbonate induced by Myxococcus xanthus: Implications for recognition of bacterial carbonates. J. Sediment. Res. 74, 868–876 (2004).
Google Scholar
Oxtoby, D. W. Homogeneous nucleation: Theory and experiment. J. Phys. Condens. Matter 4, 7627–7650 (1992).
Google Scholar
Al Imran, M., Shinmura, M., Nakashima, K. & Kawasaki, S. Effects of various factors on carbonate particle growth using ureolytic bacteria. Mater. Trans. 59, 1520–1527 (2018).
Google Scholar
Lee, Y. S. & Park, W. Current challenges and future directions for bacterial self-healing concrete. Appl. Microbiol. Biotechnol. 102, 3059–3070 (2018).
Google Scholar
Sondi, I. & Salopek-Sondi, B. Influence of the primary structure of enzymes on the formation of CaCO3 polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases. Langmuir 21, 8876–8882 (2005).
Google Scholar
Rodriguez-Blanco, J. D., Shaw, S. & Benning, L. G. The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 3, 265–271 (2011).
Google Scholar
Rodriguez-Navarro, C., Jroundi, F., Schiro, M., Ruiz-Agudo, E. & González-Muñoz, M. T. Influence of substrate mineralogy on bacterial mineralization of calcium carbonate: Implications for stone conservation. Appl. Environ. Microbiol. 78, 4017–4029 (2012).
Google Scholar
Dubey, A. A. et al. Biocementation mediated by native microbes from Brahmaputra riverbank for mitigation of soil erodibility. Sci. Rep. 11, 15250. https://doi.org/10.1038/s41598-021-94614-6 (2021).
Google Scholar
APHA/AWWA/WEF. Standard methods for the examination of water and wastewater. Stand. Methods 541 (2012).
Sun, X., Miao, L., Tong, T. & Wang, C. Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotech. 14, 627–638 (2019).
Google Scholar
Sun, X., Miao, L., Tong, T. & Wang, C. Improvement of microbial-induced calcium carbonate precipitation technology for sand solidification. J. Mater. Civ. Eng. 30, 04018301 (2018).
Google Scholar
Martinez, B. C., DeJong, J. T. & Ginn, T. R. Bio-geochemical reactive transport modeling of microbial induced calcite precipitation to predict the treatment of sand in one-dimensional flow. Comput. Geotech. 58, 1–13 (2014).
Google Scholar
Murugan, R., Suraishkumar, G. K., Mukherjee, A. & Dhami, N. K. Insights into the influence of cell concentration in design and development of microbially induced calcium carbonate precipitation (MICP) process. PLoS ONE 16, e0254536 (2021).
Google Scholar
Sun, X., Miao, L., Wu, L. & Wang, H. Theoretical quantification for cracks repair based on microbially induced carbonate precipitation (MICP) method. Cem. Concr. Compos. 118, 103950 (2021).
Google Scholar

