Preloader

A deep learning model for classifying human facial expressions from infrared thermal images

  • 1.

    Mehrabian, A. Communication without words. Psychol. Today 2, 53–56 (1968).

    Google Scholar 

  • 2.

    Ekman, P. & Friesen, W. V. Facial Action Coding System (Consulting Psychology Press, 1978).

    Google Scholar 

  • 3.

    Ekman, P. & Rosenberg, E. L. What the Face Reveals: Basic and Applied Studies of Spontaneous Expression Using the Facial Action Coding System (FACS) (Oxford University Press, 1997).

    Google Scholar 

  • 4.

    Harashima, H., Choi, C. S. & Takebe, T. 3-d model-based synthesis of facial expressions and shape deformation. Hum. Interface 4, 157–166 (1989).

    Google Scholar 

  • 5.

    Mase, K. An application of optical flow-extraction of facial expression. In IAPR Workshop on Machine Vision and Application 195–198 (1990).

  • 6.

    Mase, K. Recognition of facial expression from optical flow. Trans. IEICE E74(10), 3474–3483 (1991).

    Google Scholar 

  • 7.

    Matsuno, K., Lee, C. & Tsuji, S. Recognition of facial expressions using potential net and kl expansion. Trans. IEICE J77-D-I I(8), 1591–1600 (1994).

    Google Scholar 

  • 8.

    Kobayashi, H. & Hara, F. Analysis of neural network recognition characteristics of 6 basic facial expressions. In Proc. of IEEE International Workshop on Robot and Human Communication 222–227 (1994).

  • 9.

    Filippini, C., Perpetuini, D., Cardone, D., Chiarelli, A. & Merla, A. Thermal infrared imaging-based affective computing and its application to facilitate human robot interaction: A review. Appl. Sci. 10, 2924 (2020).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Goulart, C., Valadão, C., Delisle-Rodriguez, D., Caldeira, E. & Bastos, T. Emotion analysis in children through facial emissivity of infrared thermal imaging. PLoS ONE 14, e0212928 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Clay-Warner, J. & Robinson, D. Infrared thermography as a measure of emotion response. Emot. Rev. 7, 157–162 (2015).

    Article 

    Google Scholar 

  • 12.

    Kopaczka, M., Kolk, R. & Merhof, D. A fully annotated thermal face database and its application for thermal facial expression recognition. In IEEE International Instrumentation and Measurement Technology Conference (I2MTC) 1–6 (2018).

  • 13.

    Hammal, J., Covreur, L., Caplier, A. & Rombout, M. Facial expression classification: An approach based on the fusion of facial deformations using the transferable belief model. Int. J. Approx. Reason. 46, 542–567 (2007).

    Article 

    Google Scholar 

  • 14.

    Ojo, A. & Idowu, T. Improved model for facial expression classification for fear and sadness using local binary pattern histogram. J. Adv. Math. Comput. Sci. 35(5), 22–33 (2020).

    Article 

    Google Scholar 

  • 15.

    Kyperountas, M., Tefas, A. & Pitas, I. Salient feature and reliable classifier selection for facial expression classification. Pattern Recogn. 43, 972–986 (2010).

    ADS 
    Article 

    Google Scholar 

  • 16.

    Ali, M., Zhuang, H. & Ibrahim, K. An approach for facial expression classification. Int. J. Biom. 9, 96 (2017).

    Google Scholar 

  • 17.

    Bartlett, M., Littlewort, G. & Fasel, I. Towards social robots: Automatic evaluation of human–robot interaction by face detection and expression classification. Neural Inform. Process. Syst. (2003).

  • 18.

    Khan, M., Khurshid, K. & Shafait, F. A spatio-spectral hybrid convolutional architecture for hyperspectral document authentication. In International Conference on Document Analysis and Recognition 1097–1102 (2019).

  • 19.

    Rodriguez, P. et al. Deep pain: Exploiting long short-term memory networks for facial expression classification. In IEEE Transactions on Cybernetics 1–11 (2017).

  • 20.

    Lien, J. J. J., Kanade, T., Cohn, J. F. & Li, C. C. Detection, tracking, and classification of action units in facial expression. Robot. Auton. Syst. 31(3), 131–146 (2000).

    Article 

    Google Scholar 

  • 21.

    Yoshitomi, Y., Miyaura, T., Tomita, S. & Kimura, S. Face identification using thermal image processing. In Proceedings 6th IEEE International Workshop on Robot and Human Communication. RO-MAN’97 SENDAI 374–379 (1997).

  • 22.

    Yoshitomi, Y., Miyawaki, N., Tomita, S. & Kimura, S. Facial expression recognition using thermal image processing and neural network. In Proceedings 6th IEEE International Workshop on Robot and Human Communication. RO-MAN’97 SENDAI, Vol. 46, 542–567 (2002).

  • 23.

    Yoshitomi, Y., Miyawaki, N., Tomita, S. & Kimura, S. Facial expression recognition using thermal image processing and neural network. In Proceedings 6th IEEE International Workshop on Robot and Human Communication. RO-MAN’97 SENDAI, Vol. 46, 542–567 (2002).

  • 24.

    Bijalwan, V., Balodhi, M. & Gusain, A. Human emotion recognition using thermal image processing and eigenfaces. IJESR 5(1), 34–40 (2015).

    Google Scholar 

  • 25.

    Shen, P., Wang, S. & Liu, Z. Facial expression recognition from infrared thermal videos. In Intelligent Autonomous Systems 12. Advances in Intelligent Systems and Computing, Vol. 194 (2013).

  • 26.

    Goulart, C. et al. Visual and thermal image processing for facial specific landmark detection to infer emotions in a child–robot interaction. MDPI Sens. 19, 2844 (2019).

    Article 

    Google Scholar 

  • 27.

    Khan, M. M., Ingleby, M. & Ward, R. D. Automated facial expression classification and affect interpretation using infrared measurement of facial skin temperature variations. Assoc. Comput. Mach. 1, 91–113 (2006).

    Google Scholar 

  • 28.

    Prabhakaran, A., Nair, J. & Sarath, S. Thermal facial expression recognition using modified resnet152. In Advances in Computing and Network Communications 389–396 (2021).

  • 29.

    Khan, M., Khan, M., Siddiqui, A. & Khurshid, K. An automated and efficient convolutional architecture for disguise-invariant face recognition using noise-based data augmentation and deep transfer learning. In The Visual Computer 1–15 (2021).

  • 30.

    Bodavarapu, P. & Srinivas, P. Facial expression recognition for low resolution images using convolutional neural networks and denoising techniques. Indian J. Sci. Technol. 14, 971–983 (2021).

    Article 

    Google Scholar 

  • 31.

    Reddy, G., Savarni, C. & Mukherjee, S. Facial expression recognition in the wild, by fusion of deep learnt and hand-crafted features. Cogn. Syst. Res. 62, 23–34 (2020).

    Article 

    Google Scholar 

  • 32.

    Draw.io, v14.1.8. (accessed 10 September 2021); https://app.diagrams.net/.

  • 33.

    Li, S. & Deng, W. Deep facial expression recognition: A survey. IEEE Trans. Affect. Comput. 1, 6535–6548 (2020).

    Google Scholar 

  • 34.

    Yu, F. & Koltun, V. Multi-scale context aggregation by dilated convolutions. In International Conference on Learning Representations (2017).

  • 35.

    Huang, G. et al. Snapshot ensembles: Train 1, get m for free. CoRR (2017).

  • 36.

    He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition 770–778 (2016).

  • 37.

    Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In 32nd International Conference on Machine Learning, ICML (2015).

  • 38.

    Loshchilov, I. & Hutter, F. SGDR: Stochastic gradient descent with warm restarts. ICLR (2017).

  • 39.

    Selvaraju, R. R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proceedings of the IEEE International Conference on Computer Vision 618–626 (2017).

  • 40.

    Kopaczka, M., Breuer, L., Schock, J. & Merhof, D. A modular system for detection, tracking and analysis of human faces in thermal infrared recordings. Sensors 19, 4135 (2019).

    ADS 
    Article 

    Google Scholar 

  • 41.

    Panetta, K. et al. A comprehensive database for benchmarking imaging systems. IEEE Trans. Pattern Anal. Mach. Intell. 42, 509–520. https://doi.org/10.1109/tpami.2018.2884458 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 42.

    Shreyas Kamath, K. M., Rajendran, R., Wan, Q., Panetta, K. & Agaian, S. S. TERNet: A deep learning approach for thermal face emotion recognition. In Mobile Multimedia/Image Processing, Security, and Applications 2019 (SPIE, 2019). https://doi.org/10.1117/12.2518708.

  • 43.

    Samadiani, N. et al. A review on automatic facial expression recognition systems assisted by multimodal sensor data. Sensors 19, 1863 (2019).

    ADS 
    Article 

    Google Scholar 

  • 44.

    Harsih Kamar, R. J., Akash, N., Gokul, R. & Merhof, D. Facial expression recognition system using multimodal sensors. Int. J. Multidiscip. Res. Sci., Eng. Technol 1, 30–35 (2020).

    Google Scholar 

  • 45.

    Khan, M. & Curry, E. Neuro-symbolic visual reasoning for multimedia event processing: Overview, prospects and challenges. In Proceedings of the CIKM 2020 Workshops, Vol. 2699 of CEUR Workshop Proceedings (eds. Conrad, S. & Tiddi, I.) (CEUR-WS.org, 2020). http://ceur-ws.org/Vol-2699/paper10.pdf.

  • Source link