Preloader

Cell segmentation in imaging-based spatial transcriptomics

  • 1.

    Mereu, E. et al. Benchmarking single-cell RNA-sequencing protocols for cell atlas projects. Nat. Biotechnol. 38, 747–755 (2020).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Regev, A. et al. The human cell atlas. eLife 6, e27041. (2017).

    Article 

    Google Scholar 

  • 3.

    HuBMAP Consortium. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

  • 4.

    Aldridge, S. & Teichmann, S. A. Single cell transcriptomics comes of age. Nat. Commun. 11, 4307. (2020).

    Article 

    Google Scholar 

  • 5.

    Lee, J. H. et al. Highly multiplexed subcellular RNA sequencing in situ. Science 343, 1360–1363 (2014).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Ke, R. et al. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10, 857–860 (2013).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Eng, C.-H. L. et al. Transcriptome-scale super-resolved imaging in tissues by RNA seqFISH. Nature 568, 235–239 (2019).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Codeluppi, S. et al. Spatial organization of the somatosensory cortex revealed by osmFISH. Nat. Methods 15, 932–935 (2018).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Xia, C., Fan, J., Emanuel, G., Hao, J. & Zhuang, X. Spatial transcriptome profiling by MERFISH reveals subcellular RNA compartmentalization and cell cycle-dependent gene expression. Proc. Natl Acad. Sci. USA 116, 19490–19499 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Rodriques, S. G. et al. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. Science 363, 1463–1467 (2019).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Vickovic, S. et al. High-definition spatial transcriptomics for in situ tissue profiling. Nat. Methods 16, 987–990 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Lein, E., Borm, L. E. & Linnarsson, S. The promise of spatial transcriptomics for neuroscience in the era of molecular cell typing. Science 358, 64–69 (2017).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Bingham, G. C., Lee, F., Naba, A. & Barker, T. H. Spatial-omics: novel approaches to probe cell heterogeneity and extracellular matrix biology. Matrix Biol. 91-92, 152–166 (2020).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Soldatov, R. et al. Spatiotemporal structure of cell fate decisions in murine neural crest. Science 364, eaas9536 (2019).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Chen, W.-T. et al. Spatial transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell 182, 976–991 (2020).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Qian, X. et al. Probabilistic cell typing enables fine mapping of closely related cell types in situ. Nat. Methods 17, 101–106 (2020).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S. & Zhuang, X. RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348, aaa6090 (2015).

    Article 

    Google Scholar 

  • 18.

    Wang, X. et al. Three-dimensional intact-tissue sequencing of single-cell transcriptional states. Science 361, eaat5691 (2018).

    Article 

    Google Scholar 

  • 19.

    Moffitt, J. R. et al. Molecular, spatial, and functional single-cell profiling of the hypothalamic preoptic region. Science 362, eaau5324 (2018).

    Article 

    Google Scholar 

  • 20.

    Wang, Z. Cell segmentation for image cytometry: advances, insufficiencies, and challenges. Cytometry A 95, 708–711 (2019).

    Article 

    Google Scholar 

  • 21.

    Park, J. et al. Cell segmentation-free inference of cell types from in situ transcriptomics data. Nat. Commun. 12, 3545 (2021).

  • 22.

    Dirmeier, S. & Beerenwinkel, N. Structured hierarchical models for probabilistic inference from perturbation screening data. Preprint at bioRxiv https://doi.org/10.1101/848234 (2019).

  • 23.

    Zhu, Q., Shah, S., Dries, R., Cai, L. & Yuan, G.-C. Identification of spatially associated subpopulations by combining scRNAseq and sequential fluorescence in situ hybridization data. Nat. Biotechnol. 36, 1183–1190 (2018).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Rueden, C. T. et al. ImageJ2: ImageJ for the next generation of scientific image data. BMC Bioinformatics 18, 529 (2017).

    Article 

    Google Scholar 

  • 25.

    Wang, G., Moffitt, J. R. & Zhuang, X. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 8, 4847 (2018).

    Article 

    Google Scholar 

  • 26.

    Moffitt, J. R. et al. High-performance multiplexed fluorescence in situ hybridization in culture and tissue with matrix imprinting and clearing. Proc. Natl Acad. Sci. USA 113, 14456–14461 (2016).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Yangel, B. & Vetrov, D. in Energy Minimization Methods in Computer Vision and Pattern Recognition (eds Heyden, A., Kahl, F., Olsson, C., Oskarsson, M., & Tai, X.-C.) p 137–150 (Springer, 2013).

  • 29.

    McInnes, L., Healy, J. & Melville, J. UMAP: uniform manifold approximation and projection for dimension reduction. Preprint at arXiv https://arxiv.org/abs/1802.03426v3 (2018).

  • 30.

    Kanemura, A., Maeda, S. & Ishii, S. Superresolution with compound markov random fields via the variational em algorithm. Neural Netw. 22, 1025–1034 (2009).

    Article 

    Google Scholar 

  • 31.

    Blei, D. M., Kucukelbir, A. & McAuliffe, J. D. Variational inference: a review for statisticians. J. Am. Stat. Assoc. 112, 859–877 (2017).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Dempster, A. P., Laird, N. M. & Rubin, D. B. Maximum likelihood from incomplete data via the em algorithm. J. R. Stat. Soc. Series B Stat. Methodol. 39, 1–38 (1977).

    Google Scholar 

  • 33.

    Nielsen, S. F. The stochastic EM algorithm: estimation and asymptotic results. Bernoulli 6, 457–489 (2000).

    Article 

    Google Scholar 

  • 34.

    Kimura, T. et al. Expectation–maximization algorithms for inference in Dirichlet processes mixture. Pattern Anal. Appl. 16, 55–67 (2013).

    Article 

    Google Scholar 

  • 35.

    Wolf, F. A., Angerer, P. & Theis, F. J. Scanpy: large-scale single-cell gene expression data analysis. Genome Biol. 19, 15 (2018).

    Article 

    Google Scholar 

  • 36.

    Zeisel, A. et al. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347, 1138–1142 (2015).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Harris, K. D. et al. Classes and continua of hippocampal CA1 inhibitory neurons revealed by single-cell transcriptomics. PLoS Biol. 16, e2006387 (2018).

    Article 

    Google Scholar 

  • 38.

    Hodge, R. D. et al. Conserved cell types with divergent features in human versus mouse cortex. Nature 573, 61–68 (2019).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Haber, A. L. et al. A single-cell survey of the small intestinal epithelium. Nature 551, 333–339 (2017).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Gehart, H. et al. Identification of enteroendocrine regulators by real-time single-cell differentiation mapping. Cell 176, 1158–1173 (2019).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Tsoucas, D. et al. Accurate estimation of cell-type composition from gene expression data. Nat. Commun. 10, 2975 (2019).

    Article 

    Google Scholar 

  • 42.

    Moffitt, J. R. et al. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. Proc. Natl Acad. Sci. USA 113, 11046–11051 (2016).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Stringer, C., Wang, T., Michaelos, M. & Pachitariu, M. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18, 100–106 (2021).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Traag, V. A., Waltman, L. & Van Eck, N. J. From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9, 5233 (2019).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Lohoff, T. et al. Highly multiplexed spatially resolved gene expression profiling of mouse organogenesis. Preprint at bioRxiv https://doi.org/10.1101/2020.11.20.391896 (2020).

  • Source link