Stover, R. H. & Simmonds, N. W. Bananas (Longman Scientific & Technical, 1987).
Singh, H. P., Uma, S. & Sathiamoorthy, S. A Tentative Key for Identification and Classification of Indian Bananas (National Research Centre for banana (ICAR), 2001).
Ploetz, R. C., Kepler, A. K., Daniells, J. & Nelson, S. C. Banana and plantain: An overview with emphasis on Pacific island cultivars. Species Profiles Pac. Island Agrofor. 1, 21–32 (2007).
Pegg, K. G., Coates, L. M., O’Neill, W. T. & Turner, D. W. The epidemiology of fusarium wilt of banana. Front. Plant Sci. 10, 1–19 (2019).
Google Scholar
Dita, M., Barquero, M., Heck, D., Mizubuti, E. S. G. & Staver, C. P. Fusarium wilt of banana: Current knowledge on epidemiology and research needs toward sustainable disease management. Front. Plant Sci. 91, 1468 (2018).
Google Scholar
FAO. The Global Programme on Banana Fusarium Wilt Disease (Programme Summary) Protecting Banana Production from the Disease with Focus on Tropical Race 4 (TR4). 8 http://www.fao.org/fileadmin/templates/fcc/web_programmesummary_PRINT.pdf (2017).
Anis, M. & Ahmad, N. Plant Tissue Culture: Propagation, Conservation and Crop Improvement (Springer, 2016).
Google Scholar
Rishbeth, J. Fusarium wilt of bananas in Jamaica: II. Some apsects of host-parasite relationships. Ann. Bot. 21, 215–245 (1957).
Google Scholar
Su, H. J., Hwang, S. C. & Ko, W. H. Fusarial wilt of cavendish Bananas in Taiwan. Plant Dis. 70, 814–818 (1986).
Google Scholar
Cardoso, J. C., Sheng Gerald, L. T. & Teixeira da Silva, J. A. Micropropagation in the twenty-first century. In Methods in Molecular Biology (Springer, 2018).
Sathiamoorthy, S., Uma, S., Selvarajan, R. & Shyam, B. Multiplication of Virus-Free Banana Plants Through Shoot Tip Culture. Technical Bulletin No.3 (National Research Centre for Banana (ICAR), 2001).
Muhammad, A., Hussain, I., Saqlan Naqvi, S. M. & Rashid, H. Banana plantlet production through tissue culture. Pak. J. Bot. 36, 617–620 (2004).
Kodym, A. & Zapata-Arias, F. J. Low-cost alternatives for the micropropagation of banana. Plant Cell Tissue Organ Cult. 66, 67–71 (2001).
Google Scholar
Nandwani, D., Zehr, U., Zehr, B. E. & Barwale, R. B. Mass propagation and ex vitro survival of banana cv. ‘Basrai’ through tissue culture. Gartenbauwissenschaft 65, 237–240 (2000).
Google Scholar
Saraswathi, M. S. et al. Cost-effective tissue culture media for large-scale propagation of three commercial banana (Musa spp.) varieties. J. Hortic. Sci. Biotechnol. 91, 23–29 (2016).
Google Scholar
Jekayinoluwa, T. et al. Agromorphologic, genetic and methylation profiling of Dioscorea and Musa species multiplied under three micropropagation systems. PLoS ONE 14, 1–17 (2019).
Google Scholar
FAO and IAEA Proceedings of a technical meeting organized by the Joint FAO/IAEA division of nuclear techniques in food and agriculture and held in Vienna, 26–30 August 2002. In Low Cost Options for Tissue Culture Technology in Developing Countries 26–30 (International Atomic Energy Agency, 2004).
Bello-Bello, J. J., Cruz-Cruz, C. A. & Pérez-Guerra, J. C. A new temporary immersion system for commercial micropropagation of banana (Musa AAA cv. Grand Naine). In vitro Cell. Dev. Biol. 55, 313–320 (2019).
Google Scholar
Alvard, D., Cote, F. & Teisson, C. Comparison of methods of liquid medium culture for banana micropropagation: Effects of temporary immersion of explants. Plant Cell Tissue Organ Cult. 32, 55–60 (1993).
Google Scholar
Teisson, C. & Alvard, D. A new concept of plant. In In vitro Cultivation Liquid Medium: Temporary Immersion 105–110 (Springer, 1995).
Roels, S. et al. Optimization of plantain (Musa AAB ) micropropagation by temporary immersion system. Plant Cell Tissue Organ Cult. 82, 57–66 (2005).
Google Scholar
Roels, S. et al. The effect of headspace renewal in a Temporary Immersion Bioreactor on plantain (Musa AAB) shoot proliferation and quality. Plant Cell Tissue Organ Cult. 84, 155–163 (2006).
Google Scholar
Aragón, C. E. et al. Photosynthesis and carbon metabolism in plantain (Musa AAB) plantlets growing in temporary immersion bioreactors and during ex vitro acclimatization. In Vitro Cell. Dev. Biol. 41, 550–554 (2005).
Google Scholar
Aragón, C. E. et al. Comparison of plantain plantlets propagated in temporary immersion bioreactors and gelled medium during in vitro growth and acclimatization. Biol. Plant. 58, 29–38 (2014).
Google Scholar
Wilken, D. et al. Effect of immersion systems, lighting, and TIS designs on biomass increase in micropropagating banana (Musa spp. cv ‘Grande naine’ AAA). In Vitro Cell. Dev. Biol. 50, 582–589 (2014).
Google Scholar
Mordocco, A. M., Brumbley, J. A. & Prakash, L. Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell. Dev. Biol. 45, 450–457 (2009).
Google Scholar
Escalona, M. et al. Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Rep. 18, 743–748 (1999).
Google Scholar
Othmani, A., Bayoudh, C., Drira, N. & Trifi, M. In vitro cloning of date palm phoenix dactylifera l., cv. Deglet bey by using embryogenic suspension and temporary immersion bioreactor (tib). Biotechnol. Biotechnol. Equip. 23, 1181–1188 (2009).
Google Scholar
Georgiev, V., Schumann, A., Pavlov, A. & Bley, T. Temporary immersion systems in plant biotechnology. Eng. Life Sci. 14, 607–621 (2014).
Google Scholar
Martínez-Estrada, E., Islas-Luna, B., Pérez-Sato, J. A. & Bello-Bello, J. J. Temporary immersion improves in vitro multiplication and acclimatization of Anthurium andreanum Lind. Sci. Hortic. 249, 185–191 (2019).
Google Scholar
Etienne, H. & Berthouly, M. Temporary immersion systems in plant micropropagation. Plant Cell Tissue Organ Cult. 69, 215–231 (2002).
Google Scholar
Ayub, R. A. et al. Sucrose concentration and volume of liquid medium on the in vitro growth and development of blackberry cv. Tupy in temporary immersion systems. Cienc. Agrotecnol. https://doi.org/10.1590/1413-7054201943007219 (2019).
Google Scholar
Ramos-Castellá, A., Iglesias-Andreu, L. G., Bello-Bello, J. & Lee-Espinosa, H. Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. In Vitro Cell. Dev. Biol. 50, 576–581 (2014).
Google Scholar
Zhang, B. et al. Optimizing factors affecting development and propagation of Bletilla striata in a temporary immersion bioreactor system. Sci. Hortic. 232, 121–126 (2018).
Google Scholar
Mendes, B. M. J., Filippi, S. B., Demétrio, C. G. B. & Rodriguez, A. P. M. A statistical approach to study the dynamics of micropropagation rates, using banana (Musa spp.) as an example. Plant Cell Rep. 18, 967–971 (1999).
Google Scholar
Banthorpe, D. V. & Brown, G. D. Growth and secondary metabolism in cell cultures of Tanacetum, Mentha and Anethum species in buffered media. Plant Sci. 67, 107–113 (1990).
Google Scholar
Sekeli, R., Abdullah, J. O., Namasivayam, P., Muda, P. & Bakar, U. K. A. Better rooting procedure to enhance survival rate of field grown malaysian eksotika papaya transformed with 1-aminocyclopropane-1-carboxylic acid oxidase gene. ISRN Biotechnol. 2013, 1–13 (2013).
Google Scholar
Arab, M. M. et al. Modeling and optimizing a new culture medium for in vitro rooting of G×N15 prunus rootstock using artificial neural network-genetic algorithm. Sci. Rep. 8, 1–18 (2018).
Google Scholar
Nicholson, J., Shukla, M. R. & Saxena, P. K. In vitro rooting of hybrid hazelnuts (Corylus avellana × corylus americana) in a temporary immersion system. Botany 98, 343–352 (2020).
Google Scholar
Simonton, W., Robacker, C. & Krueger, S. A programmable micropropagation apparatus using cycled liquid medium. Plant Cell. Tissue Organ Cult. 27, 211–218 (1991).
Google Scholar
Niemenak, N., Noah, A. M. & Omokolo, D. N. Micropropagation of cocoyam (Xanthosoma sagittifolium L. Schott) in temporary immersion bioreactor. Plant Biotechnol. Rep. 7, 383–390 (2013).
Google Scholar
McAlister, B., Finnie, J., Watt, M. P. & Blakeway, F. Use of the temporary immersion bioreactor system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell. Tissue Organ Cult. 81, 347–358 (2005).
Google Scholar
Ramírez-Mosqueda, M. A., Iglesias-Andreu, L. G., Ramírez-Madero, G. & Hernández-Rincón, E. U. Micropropagation of Stevia rebaudiana Bert. in temporary immersion systems and evaluation of genetic fidelity. S. Afr. J. Bot. 106, 238–243 (2016).
Google Scholar
Martre, P., Lacan, D., Just, D. & Teisson, C. Physiological effects of temporary immersion on Hevea brasiliensis callus. Plant Cell Tissue Organ Cult. 67, 25–35 (2001).
Google Scholar
Zhao, Y., Sun, W., Wang, Y., Saxena, P. K. & Liu, C. Z. Improved mass multiplication of Rhodiola crenulata shoots using temporary immersion bioreactor with forced ventilation. Appl. Biochem. Biotechnol. 166, 1480–1490 (2012).
Google Scholar
Tomlinson, P. B. Development of the stomatal complex as a taxonomic character in the monocotyledons. Taxon 23, 109–128 (1974).
Google Scholar
Batista, D. S. et al. Light quality in plant tissue culture: Does it matter?. In Vitro Cell. Dev. Biol. 54, 195–215 (2018).
Google Scholar
Kaur, N. et al. Regulation of banana phytoene synthase (MaPSY) expression, characterization and their modulation under various abiotic stress conditions. Front. Plant Sci. 8, 462 (2017).
Google Scholar
Nisar, N., Li, L., Lu, S., Khin, N. C. & Pogson, B. J. Carotenoid metabolism in plants. Mol. Plant 8, 68–82 (2015).
Google Scholar
Harvey, B. M. R., Selby, C. & Bowden, G. Stimulation of rooting in vitro: Effects of inhibitors of abscisic acid synthesis. In Physiology, Growth and Development of Plants in Culture (eds Lumsden, P. J. et al.) (Springer, 1994).
Hazarika, B. N. Morpho-physiological disorders in in vitro culture of plants. Sci. Hortic. 108, 105–120 (2006).
Google Scholar
Murashige, T. & Skoog, F. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).
Google Scholar
Ramírez-Mosqueda, M. A., Cruz-Cruz, C. A., Cano-Ricárdez, A. & Bello-Bello, J. J. Assessment of different temporary immersion systems in the micropropagation of anthurium (Anthurium andreanum). Biotech 9, 3–9 (2019).
Aliniaeifard, S. & Van Meeteren, U. Stomatal characteristics and desiccation response of leaves of cut chrysanthemum (Chrysanthemum morifolium) flowers grown at high air humidity. Sci. Hortic. 205, 84–89 (2016).
Google Scholar
Monja-Mio, K. M., Pool, F. B., Herrera, G. H., EsquedaValle, M. & Robert, M. L. Development of the stomatal complex and leaf surface of Agave angustifolia Haw. ‘Bacanora’ plantlets during the in vitro to ex vitro transition process. Sci. Hortic. 189, 32–40 (2015).
Google Scholar
Maleki Asayesh, Z., Vahdati, K., Aliniaeifard, S. & Askari, N. Enhancement of ex vitro acclimation of walnut plantlets through modification of stomatal characteristics in vitro. Sci. Hortic. 220, 114–121 (2017).
Google Scholar
Thomas, B. F. & ElSohly, M. A. The botany of Cannabis sativa L. In The Analytical Chemistry of Cannabis 1–26 (Elsevier, 2016).
Bhatia, S. & Sharma, K. Technical glitches in micropropagation. In Modern Applications of Plant Biotechnology in Pharmaceutical Sciences (Elsevier, 2015).
Rout, G. R., Senapati, S. K., Aparajita, S. & Palai, S. K. Studies on genetic identification and genetic fidelity of cultivated banana using ISSR markers. Plant Omics J. Southern Cross J. 2, 250–285 (2009).
Google Scholar
Venkatachalam, L., Sreedhar, R. V. & Bhagyalakshmi, N. Genetic analyses of micropropagated and regenerated plantlets of banana as assessed by RAPD and ISSR markers. In Vitro Cell. Dev. Biol. 43, 267–274 (2007).
Google Scholar
Saraswathi, M. S. et al. Assessing the robustness of IRAP and RAPD marker systems to study intra-group diversity among cavendish (AAA) clones of banana. J. Hortic. Sci. Biotechnol. 86, 7–12 (2011).
Google Scholar
Burnison, B. K. Modified dimethyl sulfoxide (DMSO) extraction for chlorophyll analysis of phytoplankton. Can. J. Fish. Aquat. Sci. 37, 729–733 (1980).
Google Scholar
Xu, Z. & Zhou, G. Responses of leaf stomatal density to water status and its relationship with photosynthesis in a grass. J. Exp. Bot. 59, 3317–3325 (2008).
Google Scholar
Zakaria, W. & Razak, A. R. SEM study of the morphology of leaves of four dessert banana cultivars (Musa spp. Cv. ‘Intan’, ‘Jari Buaya’, ‘Novaria’ and ‘Raja Udang Merah’) in Malaysia. J. Trop. Agric. Food Sci. 27, 151–158 (1999).
Zakaria, W. & Razak, A. R. The SEM of the surface features of dessert banana peel (Musa spp., AA and AAA groups). In Proc. First Asean Microscopy Confence November 27–30, 1997, Senai, Johor, Malaysia (eds Razak, A. R. et al.) 120–123. (Electron Microscopy Society Malaysia, 1997).
Gawel, N. J. & Jarret, R. L. A modified CTAB DNA extraction procedure for Musa and Ipomoea. Plant Mol. Biol. Rep. 9, 262 (1991).
Google Scholar

