Preloader

Personalized diet study of dietary advanced glycation end products (AGEs) and fatty acid desaturase 2 (FADS2) genotypes in obesity

  • 1.

    Huang, H., Yan, Z., Chen, Y. & Liu, F. A social contagious model of the obesity epidemic. Sci. Rep. 6, 37961–37970 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Tabrizi, J. S., Sadeghi-Bazargani, H., Farahbakhsh, M., Nikniaz, L. & Nikniaz, Z. Prevalence and associated factors of overweight or obesity and abdominal obesity in Iranian population: a population-based study of northwestern Iran. Iran. J. Public Health. 47, 1583–1592 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Blüher, M. Obesity: global epidemiology and pathogenesis. Nat. Rev. Endocrinol. 15, 288–298 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 4.

    Bray, G. A., Kim, K. K. & Wilding, J. P. H. Obesity: A chronic relapsing progressive disease process: A position statement of the World Obesity Federation. Obes. Rev. 18, 715–723 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 5.

    Gol, S., Pena, R. N., Rothschild, M. F., Tor, M. & Estany, J. A polymorphism in the fatty acid desaturase-2 gene is associated with the arachidonic acid metabolism in pigs. Sci. Rep. 8, 1–9 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    He, Z. et al. FADS1-FADS2 genetic polymorphisms are associated with fatty acid metabolism through changes in DNA methylation and gene expression. Clin. Epigenetics. 10, 1–13 (2018).

    Article 
    CAS 

    Google Scholar 

  • 7.

    Bláhová, Z., Harvey, T. N., Pšenička, M. & Mráz, J. Assessment of fatty acid desaturase (Fads2) structure-function properties in fish in the context of environmental adaptations and as a target for genetic engineering. Biomolecules 10, 1–13 (2020).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Brown, K. M. et al. Delta-6-desaturase (FADS2) inhibition and omega-3 fatty acids in skeletal muscle protein turnover. Biochem. Biophys. Rep. 18, 100622–100629 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Mazoochian, L., Mir Mohammad Sadeghi, H. & Pourfarzam, M. The effect of FADS2 gene rs174583 polymorphism on desaturase activities, fatty acid profile, insulin resistance, biochemical indices, and incidence of type 2 diabetes. JRMS. 23, 47 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Egaña-Gorroño, L. et al. Receptor for advanced glycation end products (RAGE) and mechanisms and therapeutic opportunities in diabetes and cardiovascular disease: Insights from human subjects and animal models. Front. Cardiovasc. Med. 7, 37–52 (2020).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 11.

    Sergi, D., Boulestin, H., Campbell, F. M. & Williams, L. M. The role of dietary advanced glycation end products in metabolic dysfunction. Mol. Nutr. Food. Res. 65, e1900934-1900945 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 12.

    Bettiga, A. et al. The modern western diet rich in advanced glycation end-products (AGEs): An overview of its impact on obesity and early progression of renal pathology. Nutrients 11, 1–19 (2019).

    Article 
    CAS 

    Google Scholar 

  • 13.

    Tessier, F. J. & Birlouez-Aragon, I. Health effects of dietary Maillard reaction products: The results of ICARE and other studies. Amino Acids 42, 1119–1131 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Ribeiro, P. V. M., Tavares, J. F., Costa, M. A. C. & Mattar, J. B. G. Effect of reducing dietary advanced glycation end products on obesity-associated complications: A systematic review. Nutr. Rev. 77, 725–734 (2019).

    PubMed 
    Article 

    Google Scholar 

  • 15.

    Tavares, J. F., Ribeiro, P. V. M., Coelho, O. G. L., Silva, L. E. D. & Alfenas, R. C. G. Can advanced glycation end-products and their receptors be affected by weight loss? A systematic review. Obes. Rev. 21, 1–13 (2020).

    Google Scholar 

  • 16.

    Uribarri, J. et al. Advanced glycation end products in foods and a practical guide to their reduction in the diet. J. Am. Diet. Assoc. 110, 911–16.e12 (2010).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Tessier, F. J. et al. Quantitative assessment of organ distribution of dietary protein-bound 13C-labeled Nɛ-carboxymethyllysine after a chronic oral exposure in mice. Mol. Nutr. Food Res. 60, 2446–2456 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Gaens, K. H. J. et al. Nε-(carboxymethyl) lysine-receptor for advanced glycation end product axis is a key modulator of obesity-induced dysregulation of adipokine expression and insulin resistance. ATVB. 34, 1199–1208 (2014).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Clarke, R. E., Dordevic, A. L., Tan, S. M., Ryan, L. & Coughlan, M. T. Dietary advanced glycation end products and risk factors for chronic disease: A systematic review of randomised controlled trials. Nutrients 8, 125–151 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 20.

    Sohouli, M. H., Sharifi-Zahabi, E., Lari, A. & Fatahi, S. F. S. The impact of low advanced glycation end products diet on obesity and related hormones: a systematic review and meta-analysis. Sci. Rep. 10, 22194–22205 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Stütz, A. M., Morrison, C. D. & Argyropoulos, G. The Agouti-related protein and its role in energy homeostasis. Peptides 26, 1771–1781 (2005).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 22.

    Abe, Y. et al. Melanin synthesis induction by advanced glycation end-products (AGEs) without α-melanocyte stimulating hormone (α-MSH) or UV exposure. Glycative Stress Res. 3, 229–235 (2016).

    Google Scholar 

  • 23.

    Brownlee, M. Biochemistry and molecular cell biology of diabetic complications. Nature 414, 813–820 (2001).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Booth, M. Assessment of physical activity: an international perspective. Res. Q. Exerc. Sport. 71, 114–120 (2000).

    PubMed 
    Article 

    Google Scholar 

  • 25.

    Kouchi, M. Anthropometric methods for apparel design: Body measurement devices and techniques. In Anthropometry, Apparel Sizing and Design 67–94 (Elsevier, 2014).

    Chapter 

    Google Scholar 

  • 26.

    Friedewald, W. T., Levy, R. I. & Fredrickson, D. S. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin. Chem. 18, 499–502 (1972).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 27.

    Gutch, M., Kumar, S., Razi, S. M., Gupta, K. K. & Gupta, A. Assessment of insulin sensitivity/resistance. Indian. J. Endocrinol. Metab. 19, 160–164 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 28.

    Katz, A. et al. Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocrinol. Metab. 85, 2402–2410 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Hosseini-Esfahani, F., Asghari, G., Mirmiran, P. & Azizi, F. Reproducibility and relative validity of food group intake in a food frequency questionnaire developed for the Tehran Lipid and Glucose Study. J. Epidemiol. 20, 150–158 (2010).

    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 30.

    Mirmiran, P., Hosseini-Esfahani, F., Mehrabi, Y., Hedayati, M. & Azizi, F. Reliability and relative validity of an FFQ for nutrients in the Tehran lipid and glucose study. Public Health Nutr. 13, 654–662 (2010).

    PubMed 
    Article 

    Google Scholar 

  • 31.

    Ghaffarpour, M., Houshiar-Rad, A. & Kianfar, H. The manual for household measures, cooking yields factors and edible portion of foods. Tehran Nashre Olume Keshavarzy. 7, 42–58 (1999).

    Google Scholar 

  • 32.

    Goldberg, T. et al. Advanced glycoxidation end products in commonly consumed foods. J. Am. Diet. Assoc. 104, 1287–1291 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 33.

    Malerba, G. et al. SNPs of the FADS gene cluster are associated with polyunsaturated fatty acids in a cohort of patients with cardiovascular disease. Lipids 43, 289–299 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 34.

    Hu, L. T. & Bentler, P. M. Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Struct. Equ. Modeling. 6, 1–55 (1999).

    Article 

    Google Scholar 

  • 35.

    Ghorbaninejad, P. et al. A negative association of dietary advanced glycation end products with obesity and body composition in Iranian adults. Br. J. Nutr. 125, 471–480 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Uribarri, J. et al. Circulating glycotoxins and dietary advanced glycation endproducts: Two links to inflammatory response, oxidative stress, and aging. J. Gerontol. A. 62, 427–433 (2007).

    Article 

    Google Scholar 

  • 37.

    Mirmiran, P., Hadavi, H., Mottaghi, A. & Azizi, F. Advanced glycation end products and risk of general and abdominal obesity in Iranian adults: Tehran lipid and glucose study. MJIRI 33, 21–28 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Leuner, B. et al. RAGE influences obesity in mice. Z. Gerontol. Geriatr. 45, 102–108 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Angoorani, P., Ejtahed, H. S., Mirmiran, P., Mirzaei, S. & Azizi, F. Dietary consumption of advanced glycation end products and risk of metabolic syndrome. Int. J. Food. Sci. Nutr. 67, 170–176 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Vistoli, G. et al. Advanced glycoxidation and lipoxidation end products (AGEs and ALEs): An overview of their mechanisms of formation. Free Radic. Res. 47, 3–27 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 41.

    Münch, G. et al. Amino acid specificity of glycation and protein–AGE crosslinking reactivities determined with a dipeptide SPOT library. Nat. Biotechnol. 17, 1006–1010 (1999).

    PubMed 
    Article 

    Google Scholar 

  • 42.

    Poulsen, M. W. et al. Effect of dietary advanced glycation end products on postprandial appetite, inflammation, and endothelial activation in healthy overweight individuals. Eur. J. Nutr. 53, 661–672 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Tahara, N. et al. Serum levels of advanced glycation end products (AGEs) are independent correlates of insulin resistance in nondiabetic subjects. Cardiovasc. Ther. 30, 42–48 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Uribarri, J. et al. Elevated serum advanced glycation endproducts in obese indicate risk for the metabolic syndrome: A link between healthy and unhealthy obesity?. J. Clin. Endocrinol. Metab. 100, 1957–1966 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 45.

    Mendoza-Herrera, K. et al. Association of dietary advanced glycation end products with metabolic syndrome in young Mexican adults. Medicines. 5, 128–138 (2018).

    CAS 
    PubMed Central 
    Article 
    PubMed 

    Google Scholar 

  • 46.

    Cai, W. et al. Oral advanced glycation endproducts (AGEs) promote insulin resistance and diabetes by depleting the antioxidant defenses AGE receptor-1 and sirtuin 1. PNAS 109, 15888–15893 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Wang, S. et al. Linoleic acid and stearic acid elicit opposite effects on AgRP expression and secretion via TLR4-dependent signaling pathways in immortalized hypothalamic N38 cells. Biochem. Biophys. Res. Commun. 471, 566–571 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Source link