Preloader

Genomic background selection to reduce the mutation load after random mutagenesis

  • 1.

    Friedt, W., Tu, J. & Fu, T. In The Brassica napus Genome (eds Liu, S. et al.) 1–20 (Springer International Publishing, 2018).

    Google Scholar 

  • 2.

    Watson, A. et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4, 23–29. https://doi.org/10.1038/s41477-017-0083-8 (2018).

    Article 
    PubMed 

    Google Scholar 

  • 3.

    Williams, P. H. & Hill, C. B. Rapid-cycling populations of Brassica. Science 232, 1385–1389. https://doi.org/10.1126/science.232.4756.1385 (1986).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Chalhoub, B. et al. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345, 950–953. https://doi.org/10.1126/science.1253435 (2014).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Lu, K. et al. Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat. Commun. 10, 1154. https://doi.org/10.1038/s41467-019-09134-9 (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Karunarathna, N. L., Wang, H. Y., Harloff, H. J., Jiang, L. X. & Jung, C. Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes. Plant Biotechnol. J. https://doi.org/10.1111/pbi.13381 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Sashidhar, N., Harloff, H. J., Potgieter, L. & Jung, C. T. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechnol. J. 18, 2241–2250. https://doi.org/10.1111/pbi.13380 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Braatz, J. et al. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 174, 935–942. https://doi.org/10.1104/pp.17.00426 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Kupferschmidt, K. EU verdict on CRISPR crops dismays scientists. Science 361, 435–436 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Shah, S., Karunarathna, N. L., Jung, C. & Emrani, N. An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.). BMC Plant Biol. https://doi.org/10.1186/S12870-018-1606-9 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Braatz, J., Harloff, H. J. & Jung, C. EMS-induced point mutations in ALCATRAZ homoeologs increase silique shatter resistance of oilseed rape (Brassica napus). Euphytica https://doi.org/10.1007/s10681-018-2113-7 (2018).

    Article 

    Google Scholar 

  • 12.

    Simmonds, J. et al. A splice acceptor site mutation in TaGW2-A1 increases thousand grain weight in tetraploid and hexaploid wheat through wider and longer grains. Theor. Appl. Genet. 129, 1099–1112. https://doi.org/10.1007/s00122-016-2686-2 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    Guo, Y., Hans, H., Christian, J. & Molina, C. Mutations in single FT– and TFL1-paralogs of rapeseed (Brassica napus L.) and their impact on flowering time and yield components. Front. Plant Sci. https://doi.org/10.3389/Fpls.2014.00282 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Hasan, M. M. et al. Marker-assisted backcrossing: a useful method for rice improvement. Biotechnol. Biotechnol. Equip. 29, 237–254. https://doi.org/10.1080/13102818.2014.995920 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Lenaerts, B., Collard, B. C. Y. & Demont, M. Review: Improving global food security through accelerated plant breeding. Plant. Sci. 287, 1. https://doi.org/10.1016/j.plantsci.2019.110207 (2019).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Jamaloddin, M. et al. Marker Assisted Gene Pyramiding (MAGP) for bacterial blight and blast resistance into mega rice variety “Tellahamsa”. PLoS ONE https://doi.org/10.1371/journal.pone.0234088 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Herzog, E. & Frisch, M. Selection strategies for marker-assisted backcrossing with high-throughput marker systems. Theor. Appl. Genet. 123, 251–260. https://doi.org/10.1007/s00122-011-1581-0 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 18.

    Snowdon, R. J. & Luy, F. L. I. Potential to improve oilseed rape and canola breeding in the genomics era. Plant Breed. 131, 351–360. https://doi.org/10.1111/j.1439-0523.2012.01976.x (2012).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Obermeier, C. & Friedt, W. 16 – Applied oilseed rape marker technology and genomics. In Applied Plant Genomics and Biotechnology (eds Poltronieri, P. & Hong, Y.) 253–295 (Woodhead Publishing, 2015). https://doi.org/10.1016/B978-0-08-100068-7.00016-1.

    Chapter 

    Google Scholar 

  • 20.

    Delourme, R. et al. High-density SNP-based genetic map development and linkage disequilibrium assessment in Brassica napus L. BMC Genomics 14, 120. https://doi.org/10.1186/1471-2164-14-120 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Delourme, R. et al. Genes and Quantitative Trait Loci Mapping for Major Agronomic Traits in Brassica napus L. In The Brassica napus Genome (eds Liu, S. et al.) 41–85 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-43694-4_3.

    Chapter 

    Google Scholar 

  • 22.

    Dalton-Morgan, J. et al. A high-throughput SNP array in the amphidiploid species Brassica napus shows diversity in resistance genes. Funct. Integr. Genomic 14, 643–655. https://doi.org/10.1007/s10142-014-0391-2 (2014).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Clarke, W. E. et al. A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor. Appl. Genet. 129, 1887–1899. https://doi.org/10.1007/s00122-016-2746-7 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 24.

    Mason, A. S. et al. High-throughput genotyping for species identification and diversity assessment in germplasm collections. Mol. Ecol. Resour. 15, 1091–1101. https://doi.org/10.1111/1755-0998.12379 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Li, F. et al. Genome-wide association study dissects the genetic architecture of seed weight and seed quality in rapeseed (Brassica napus L.). DNA Res 21, 355–367. https://doi.org/10.1093/dnares/dsu002 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Hatzig, S. V. et al. Genome-wide association mapping unravels the genetic control of seed germination and vigor in Brassica napus. Front. Plant. Sci. 6, 221. https://doi.org/10.3389/fpls.2015.00221 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Xu, L. et al. Genome-wide association study reveals the genetic architecture of flowering time in rapeseed (Brassica napus L.). DNA Res 23, 43–52. https://doi.org/10.1093/dnares/dsv035 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 28.

    Wei, L. J. et al. Genome-wide association analysis and differential expression analysis of resistance to Sclerotinia stem rot in Brassica napus. Plant. Biotechnol. J. 14, 1368–1380. https://doi.org/10.1111/pbi.12501 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 29.

    Qu, C. M. et al. Identification of Candidate Genes for Seed Glucosinolate Content Using Association Mapping in Brassica napus L. Genes-Basel 6, 1215–1229. https://doi.org/10.3390/genes6041215 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Zhang, J. et al. Identification of putative candidate genes for water stress tolerance in canola (Brassica napus). Front. Plant Sci. https://doi.org/10.3389/Fpls.2015.01058 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Sashidhar, N., Harloff, H.-J. & Jung, C. Identification of phytic acid mutants in oilseed rape (Brassica napus) by large scale screening of mutant populations through amplicon sequencing. New Phytol. https://doi.org/10.1111/nph.16281 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 32.

    Sashidhar, N., Harloff, H. J. & Jung, C. Knockout of MULTI-DRUG RESISTANT PROTEIN 5 genes lead to low phytic acid contents in oilseed rape. Front Plant Sci 11, 1. https://doi.org/10.3389/fpls.2020.00603 (2020).

    Article 

    Google Scholar 

  • 33.

    Harloff, H. J. et al. A mutation screening platform for rapeseed (Brassica napus L.) and the detection of sinapine biosynthesis mutants. Theor. Appl. Genet. 124, 957–969. https://doi.org/10.1007/s00122-011-1760-z (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Saxena, K. B., Saxena, R. K., Hickey, L. T. & Varshney, R. K. Can a speed breeding approach accelerate genetic gain in pigeonpea?. Euphytica 215, 202. https://doi.org/10.1007/s10681-019-2520-4 (2019).

    Article 

    Google Scholar 

  • 35.

    Mobini, S. H., Lulsdorf, M., Warkentin, T. D. & Vandenberg, A. Plant growth regulators improve in vitro flowering and rapid generation advancement in lentil and faba bean. In Vitro Cell Dev-Pl 51, 71–79. https://doi.org/10.1007/s11627-014-9647-8 (2015).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Herzog, E. & Frisch, M. Efficient marker-assisted backcross conversion of seed-parent lines to cytoplasmic male sterility. Plant Breed. 132, 33–41. https://doi.org/10.1111/pbr.12021 (2013).

    Article 

    Google Scholar 

  • 37.

    Frisch, M. & Melchinger, A. E. Selection theory for marker-assisted backcrossing. Genetics 170, 909–917. https://doi.org/10.1534/genetics.104.035451 (2005).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Bernardo, R., Murigneux, A., Maisonneuve, J. P., Johnsson, C. & Karaman, Z. RFLP-based estimates of parental contribution to F2– and BC1-derived maize inbreds. Theor. Appl. Genet. 94, 652–656. https://doi.org/10.1007/s001220050462 (1997).

    Article 

    Google Scholar 

  • 39.

    Sagare, D. B., Shetti, P., Surender, M. & Reddy, S. S. Marker-assisted backcross breeding for enhancing β-carotene of QPM inbreds. Mol Breed. https://doi.org/10.1007/s11032-019-0939-x (2019).

    Article 

    Google Scholar 

  • 40.

    Rai, N. et al. Marker-assisted backcross breeding for improvement of drought tolerance in bread wheat (Triticum aestivum L. em Thell). Plant Breed. 137, 514–526. https://doi.org/10.1111/pbr.12605 (2018).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Chukwu, S. C. et al. Genetic analysis of microsatellites associated with resistance against bacterial leaf blight and blast diseases of rice (Oryza sativa L.). Biotechnol. Biotechnol. Equip. 34, 898–904. https://doi.org/10.1080/13102818.2020.1809520 (2020).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Randhawa, H. S. et al. Rapid and targeted introgression of genes into popular wheat cultivars using marker-assisted background selection. PLoS ONE https://doi.org/10.1371/journal.pone.0005752 (2009).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Frisch, M. & Melchinger, A. E. Marker-assisted backcrossing for simultaneous introgression of two genes. Crop Sci. 41, 1716–1725. https://doi.org/10.2135/cropsci2001.1716 (2001).

    Article 

    Google Scholar 

  • 44.

    Emrani, N., Harloff, H. J., Gudi, O., Kopisch-Obuch, F. & Jung, C. Reduction in sinapine content in rapeseed (Brassica napus L.) by induced mutations in sinapine biosynthesis genes. Mol. Breed. https://doi.org/10.1007/s11032-015-0236-2 (2015).

    Article 

    Google Scholar 

  • 45.

    Saghaimaroof, M. A., Soliman, K. M., Jorgensen, R. A. & Allard, R. W. Ribosomal DNA spacer-length polymorphisms in Barley–Mendelian inheritance, chromosomal location, and population-dynamics. Proc. Natl. Acad. Sci. Biol. 81, 8014–8018. https://doi.org/10.1073/pnas.81.24.8014 (1984).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 46.

    Bradbury, P. J. et al. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23, 2633–2635. https://doi.org/10.1093/bioinformatics/btm308 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 47.

    Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158. https://doi.org/10.1093/bioinformatics/btr330 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Zheng, X. W. et al. A high-performance computing toolset for relatedness and principal component analysis of SNP data. Bioinformatics 28, 3326–3328. https://doi.org/10.1093/bioinformatics/bts606 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Team, R. C. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2012. http://www.R-project.org (2019).

  • 50.

    Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag. ISBN 978-3-319-24277-4, https://ggplot2.tidyverse.org

  • Source link