Preloader

A pilot study of 3D tissue-engineered bone marrow culture as a tool to predict patient response to therapy in multiple myeloma

  • 1.

    Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med. 23, 1028–1035. https://doi.org/10.1038/nm.4389 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 2.

    Federico, C. et al. Tumor microenvironment-targeted nanoparticles loaded with bortezomib and ROCK inhibitor improve efficacy in multiple myeloma. Nat. Commun. 11, 6037. https://doi.org/10.1038/s41467-020-19932-1 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Azab, A. K. et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 119, 5782–5794. https://doi.org/10.1182/blood-2011-09-380410 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Azab, A. K. et al. The influence of hypoxia on CML trafficking through modulation of CXCR4 and E-cadherin expression. Leukemia 27, 961–964. https://doi.org/10.1038/leu.2012.353 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Muz, B., de la Puente, P., Azab, F., Ghobrial, I. M. & Azab, A. K. Hypoxia promotes dissemination and colonization in new bone marrow niches in Waldenstrom macroglobulinemia. Mol. Cancer Res. 13, 263–272. https://doi.org/10.1158/1541-7786.MCR-14-0150 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 6.

    Muz, B. et al. PYK2/FAK inhibitors reverse hypoxia-induced drug resistance in multiple myeloma. Haematologica 104, e310–e313. https://doi.org/10.3324/haematol.2018.194688 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    de la Puente, P. & Azab, A. K. 3D tissue-engineered bone marrow: what does this mean for the treatment of multiple myeloma?. Fut. Oncol. (Lond., England) 12, 1545–1547. https://doi.org/10.2217/fon-2016-0057 (2016).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Weisberg, E. et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 26, 985–990. https://doi.org/10.1038/leu.2011.360 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 9.

    de la Puente, P. et al. 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials 73, 70–84. https://doi.org/10.1016/j.biomaterials.2015.09.017 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 10.

    Sun, J. et al. Targeting CD47 as a novel immunotherapy for multiple myeloma. Cancers (Basel) 12, 1. https://doi.org/10.3390/cancers12020305 (2020).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Kinan Alhallak et al. 3D Tissue Engineered Plasma Cultures Support Leukemic Proliferation and Induces Drug Resistance. Leukemia & Lymphoma (2021).

  • 12.

    Alhallak, K. et al. Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy. Leukemia https://doi.org/10.1038/s41375-021-01127-2 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 13.

    van de Donk, N. W. C. J., Pawlyn, C. & Yong, K. L. Multiple myeloma. The Lancet 397, 410–427. https://doi.org/10.1016/s0140-6736(21)00135-5 (2021).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Kumar, S. K. et al. Early relapse after autologous hematopoietic cell transplantation remains a poor prognostic factor in multiple myeloma but outcomes have improved over time. Leukemia 32, 986–995. https://doi.org/10.1038/leu.2017.331 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Bazarbachi, A. H., Al Hamed, R., Malard, F., Harousseau, J.-L. & Mohty, M. Relapsed refractory multiple myeloma: a comprehensive overview. Leukemia 33, 2343–2357. https://doi.org/10.1038/s41375-019-0561-2 (2019).

    Article 
    PubMed 

    Google Scholar 

  • 16.

    Badros, A. Z. et al. Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia 27, 1707–1714. https://doi.org/10.1038/leu.2013.29 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Wang, Z. et al. Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab. Dispos. 41, 230–237. https://doi.org/10.1124/dmd.112.047662 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Watanabe, T. et al. A phase 1/2 study of carfilzomib in Japanese patients with relapsed and/or refractory multiple myeloma. Br. J. Haematol. 172, 745–756. https://doi.org/10.1111/bjh.13900 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Hurchla, M. A. et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia 27, 430–440. https://doi.org/10.1038/leu.2012.183 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Eda, H. et al. A novel Bruton’s tyrosine kinase inhibitor CC-292 in combination with the proteasome inhibitor carfilzomib impacts the bone microenvironment in a multiple myeloma model with resultant antimyeloma activity. Leukemia 28, 1892–1901. https://doi.org/10.1038/leu.2014.69 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Hawley, T. S. et al. Identification of an ABCB1 (P-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1. Am. J. Hematol. 88, 265–272. https://doi.org/10.1002/ajh.23387 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Moreau, P. et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 12, 431–440. https://doi.org/10.1016/S1470-2045(11)70081-X (2011).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    Clemens, J. et al. Cellular uptake kinetics of bortezomib in relation to efficacy in myeloma cells and the influence of drug transporters. Cancer Chemother. Pharmacol. 75, 281–291. https://doi.org/10.1007/s00280-014-2643-1 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 24.

    Garcia-Gomez, A. et al. Preclinical activity of the oral proteasome inhibitor MLN9708 in Myeloma bone disease. Clin. Cancer Res. 20, 1542–1554. https://doi.org/10.1158/1078-0432.CCR-13-1657 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 25.

    Wong, K. Y., Wan, T. S., So, C. C. & Chim, C. S. Establishment of a bortezomib-resistant Chinese human multiple myeloma cell line: MMLAL. Cancer Cell Int. 13, 122. https://doi.org/10.1186/1475-2867-13-122 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Gupta, N. et al. A pharmacokinetics and safety phase 1/1b study of oral ixazomib in patients with multiple myeloma and severe renal impairment or end-stage renal disease requiring haemodialysis. Br. J. Haematol. 174, 748–759. https://doi.org/10.1111/bjh.14125 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    Richardson, P. G. et al. Phase 1 study of twice-weekly ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma patients. Blood 124, 1038–1046. https://doi.org/10.1182/blood-2014-01-548826 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 28.

    Chauhan, D. et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin. Cancer Res. 17, 5311–5321. https://doi.org/10.1158/1078-0432.CCR-11-0476 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Savelieva, M. et al. Population pharmacokinetics of intravenous and oral panobinostat in patients with hematologic and solid tumors. Eur. J. Clin. Pharmacol. 71, 663–672. https://doi.org/10.1007/s00228-015-1846-7 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Mu, S. et al. Panobinostat PK/PD profile in combination with bortezomib and dexamethasone in patients with relapsed and relapsed/refractory multiple myeloma. Eur. J. Clin. Pharmacol. 72, 153–161. https://doi.org/10.1007/s00228-015-1967-z (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Maiso, P. et al. The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res. 66, 5781–5789. https://doi.org/10.1158/0008-5472.CAN-05-4186 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 32.

    Catley, L. et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 108, 3441–3449. https://doi.org/10.1182/blood-2006-04-016055 (2006).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Hofmeister, C. C. et al. Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma: evidence for lenalidomide-CCI-779 interaction via P-glycoprotein. J. Clin. Oncol.. 29, 3427–3434. https://doi.org/10.1200/JCO.2010.32.4962 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 34.

    Hou, J. et al. A multicenter, open-label, phase 2 study of lenalidomide plus low-dose dexamethasone in Chinese patients with relapsed/refractory multiple myeloma: the MM-021 trial. J. Hematol. Oncol. 6, 41. https://doi.org/10.1186/1756-8722-6-41 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Richardson, P. G. et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100, 3063–3067. https://doi.org/10.1182/blood-2002-03-0996 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Xu, Q. et al. Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival. BMC Cancer 16, 297. https://doi.org/10.1186/s12885-016-2331-0 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Greenberg, A. J., Walters, D. K., Kumar, S. K., Rajkumar, S. V. & Jelinek, D. F. Responsiveness of cytogenetically discrete human myeloma cell lines to lenalidomide: lack of correlation with cereblon and interferon regulatory factor 4 expression levels. Eur. J. Haematol. 91, 504–513. https://doi.org/10.1111/ejh.12192 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Matsue, K. et al. Pomalidomide alone or in combination with dexamethasone in Japanese patients with refractory or relapsed and refractory multiple myeloma. Cancer Sci. 106, 1561–1567. https://doi.org/10.1111/cas.12772 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 39.

    Rychak, E. et al. Pomalidomide in combination with dexamethasone results in synergistic anti-tumour responses in pre-clinical models of lenalidomide-resistant multiple myeloma. Br. J. Haematol. 172, 889–901. https://doi.org/10.1111/bjh.13905 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 40.

    Guglielmelli, T. et al. mTOR pathway activation in multiple myeloma cell lines and primary tumour cells: pomalidomide enhances cytoplasmic-nuclear shuttling of mTOR protein. Oncoscience 2, 382–394. https://doi.org/10.18632/oncoscience.148 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 41.

    Iida, S. et al. Lenalidomide plus dexamethasone treatment in Japanese patients with relapsed/refractory multiple myeloma. Int. J. Hematol. 92, 118–126. https://doi.org/10.1007/s12185-010-0624-7 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 42.

    Mao, X. et al. A chemical biology screen identifies glucocorticoids that regulate c-maf expression by increasing its proteasomal degradation through up-regulation of ubiquitin. Blood 110, 4047–4054. https://doi.org/10.1182/blood-2007-05-088666 (2007).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 43.

    Stewart, H. J., Kishikova, L., Powell, F. L., Wheatley, S. P. & Chevassut, T. J. The polo-like kinase inhibitor BI 2536 exhibits potent activity against malignant plasma cells and represents a novel therapy in multiple myeloma. Exp. Hematol. 39, 330–338. https://doi.org/10.1016/j.exphem.2010.12.006 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 44.

    Chen, Y. H. et al. Inhibition of myeloma cell growth by dexamethasone and all-trans retinoic acid: synergy through modulation of interleukin-6 autocrine loop at multiple sites. Blood 87, 314–323 (1996).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Friday, E., Ledet, J. & Turturro, F. Response to dexamethasone is glucose-sensitive in multiple myeloma cell lines. J. Exp. Clin. Cancer Res. 30, 81. https://doi.org/10.1186/1756-9966-30-81 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Dorr, R. T. et al. Comparative pharmacokinetic study of high-dose etoposide and etoposide phosphate in patients with lymphoid malignancy receiving autologous stem cell transplantation. Bone Marrow Transpl. 31, 643–649. https://doi.org/10.1038/sj.bmt.1703906 (2003).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Osby, E., Liliemark, E., Bjorkholm, M. & Liliemark, J. Oral etoposide in patients with hematological malignancies: a clinical and pharmacokinetic study. Med. Oncol. 18, 269–275. https://doi.org/10.1385/MO:18:4:269 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Dvorakova, K. et al. Molecular and cellular characterization of imexon-resistant RPMI8226/I myeloma cells. Mol Cancer Ther. 1, 185–195 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Dimberg, L. Y. et al. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma. BMC Cancer 12, 318. https://doi.org/10.1186/1471-2407-12-318 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 50.

    Demel, H. R. et al. Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am. J. Cancer Res. 5, 1649–1664 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Orlowski, R. Z. et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 105, 3058–3065. https://doi.org/10.1182/blood-2004-07-2911 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 52.

    Shushanov, S. S. & Kravtsova, T. A. Cytotoxic effect of doxorubicin on human multiple myeloma cells in vitro. Bull. Exp. Biol. Med. 155, 228–232. https://doi.org/10.1007/s10517-013-2120-6 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 53.

    Zhang, H., Chen, J., Zeng, Z., Que, W. & Zhou, L. Knockdown of DEPTOR induces apoptosis, increases chemosensitivity to doxorubicin and suppresses autophagy in RPMI-8226 human multiple myeloma cells in vitro. Int. J. Mol. Med. 31, 1127–1134. https://doi.org/10.3892/ijmm.2013.1299 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Saha, M. N., Chen, Y., Chen, M. H., Chen, G. & Chang, H. Small molecule MIRA-1 induces in vitro and in vivo anti-myeloma activity and synergizes with current anti-myeloma agents. Br. J. Cancer 110, 2224–2231. https://doi.org/10.1038/bjc.2014.164 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Egerer, G. et al. The NK(1) receptor antagonist aprepitant does not alter the pharmacokinetics of high-dose melphalan chemotherapy in patients with multiple myeloma. Br. J. Clin. Pharmacol. 70, 903–907. https://doi.org/10.1111/j.1365-2125.2010.03792.x (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Osterborg, A., Ehrsson, H., Eksborg, S., Wallin, I. & Mellstedt, H. Pharmacokinetics of oral melphalan in relation to renal function in multiple myeloma patients. Eur. J. Cancer Clin. Oncol. 25, 899–903. https://doi.org/10.1016/0277-5379(89)90138-7 (1989).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 57.

    Ray, A. et al. A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells. Br. J. Haematol. 174, 397–409. https://doi.org/10.1111/bjh.14065 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Cukrova, V., Neuwirtova, R., Cermak, J. & Neuwirt, J. Inhibitor of normal granulopoiesis produced by cells of MDS patients. Neoplasma 36, 83–89 (1989).

    CAS 
    PubMed 

    Google Scholar 

  • 59.

    Mandl-Weber, S. et al. The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br. J. Haematol. 149, 518–528. https://doi.org/10.1111/j.1365-2141.2010.08124.x (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 60.

    Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818. https://doi.org/10.1038/nrd.2016.184 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 61.

    Silva, A. et al. An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma. Cancer Res. 77, 3336–3351. https://doi.org/10.1158/0008-5472.CAN-17-0502 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 62.

    Papadimitriou, K. et al. Ex Vivo Models Simulating the Bone Marrow Environment and Predicting Response to Therapy in Multiple Myeloma. Cancers (Basel) 12, https://doi.org/10.3390/cancers12082006 (2020).

  • 63.

    Sudalagunta, P. et al. A pharmacodynamic model of clinical synergy in multiple myeloma. EBioMedicine 54, 102716. https://doi.org/10.1016/j.ebiom.2020.102716 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Walker, Z. J. et al. Measurement of ex vivo resistance to proteasome inhibitors, IMiDs, and daratumumab during multiple myeloma progression. Blood Adv. 4, 1628–1639. https://doi.org/10.1182/bloodadvances.2019000122 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 65.

    Muz, B. et al. CXCR4-targeted PET imaging using (64)Cu-AMD3100 for detection of Waldenström Macroglobulinemia. Cancer Biol. Ther. 21, 52–60. https://doi.org/10.1080/15384047.2019.1665405 (2020).

    Article 
    PubMed 

    Google Scholar 

  • 66.

    de la Puente, P. et al. Enhancing proteasome-inhibitory activity and specificity of bortezomib by CD38 targeted nanoparticles in multiple myeloma. J. Control. Release 270, 158–176. https://doi.org/10.1016/j.jconrel.2017.11.045 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 67.

    Federico, C. et al. Localized Delivery of Cisplatin to Cervical Cancer Improves Its Therapeutic Efficacy and Minimizes Its Side Effect Profile. Int. J. Radiat. Oncol. Biol. Phys. 109, 1483–1494. https://doi.org/10.1016/j.ijrobp.2020.11.052 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 68.

    Muz, B. et al. A CD138-independent strategy to detect minimal residual disease and circulating tumour cells in multiple myeloma. Br. J. Haematol. 173, 70–81. https://doi.org/10.1111/bjh.13927 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Rajkumar, S. V. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15, e538-548. https://doi.org/10.1016/S1470-2045(14)70442-5 (2014).

    Article 
    PubMed 

    Google Scholar 

  • Source link