Letai, A. Functional precision cancer medicine-moving beyond pure genomics. Nat. Med. 23, 1028–1035. https://doi.org/10.1038/nm.4389 (2017).
Google Scholar
Federico, C. et al. Tumor microenvironment-targeted nanoparticles loaded with bortezomib and ROCK inhibitor improve efficacy in multiple myeloma. Nat. Commun. 11, 6037. https://doi.org/10.1038/s41467-020-19932-1 (2020).
Google Scholar
Azab, A. K. et al. Hypoxia promotes dissemination of multiple myeloma through acquisition of epithelial to mesenchymal transition-like features. Blood 119, 5782–5794. https://doi.org/10.1182/blood-2011-09-380410 (2012).
Google Scholar
Azab, A. K. et al. The influence of hypoxia on CML trafficking through modulation of CXCR4 and E-cadherin expression. Leukemia 27, 961–964. https://doi.org/10.1038/leu.2012.353 (2013).
Google Scholar
Muz, B., de la Puente, P., Azab, F., Ghobrial, I. M. & Azab, A. K. Hypoxia promotes dissemination and colonization in new bone marrow niches in Waldenstrom macroglobulinemia. Mol. Cancer Res. 13, 263–272. https://doi.org/10.1158/1541-7786.MCR-14-0150 (2015).
Google Scholar
Muz, B. et al. PYK2/FAK inhibitors reverse hypoxia-induced drug resistance in multiple myeloma. Haematologica 104, e310–e313. https://doi.org/10.3324/haematol.2018.194688 (2019).
Google Scholar
de la Puente, P. & Azab, A. K. 3D tissue-engineered bone marrow: what does this mean for the treatment of multiple myeloma?. Fut. Oncol. (Lond., England) 12, 1545–1547. https://doi.org/10.2217/fon-2016-0057 (2016).
Google Scholar
Weisberg, E. et al. Inhibition of CXCR4 in CML cells disrupts their interaction with the bone marrow microenvironment and sensitizes them to nilotinib. Leukemia 26, 985–990. https://doi.org/10.1038/leu.2011.360 (2012).
Google Scholar
de la Puente, P. et al. 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials 73, 70–84. https://doi.org/10.1016/j.biomaterials.2015.09.017 (2015).
Google Scholar
Sun, J. et al. Targeting CD47 as a novel immunotherapy for multiple myeloma. Cancers (Basel) 12, 1. https://doi.org/10.3390/cancers12020305 (2020).
Google Scholar
Kinan Alhallak et al. 3D Tissue Engineered Plasma Cultures Support Leukemic Proliferation and Induces Drug Resistance. Leukemia & Lymphoma (2021).
Alhallak, K. et al. Nanoparticle T-cell engagers as a modular platform for cancer immunotherapy. Leukemia https://doi.org/10.1038/s41375-021-01127-2 (2021).
Google Scholar
van de Donk, N. W. C. J., Pawlyn, C. & Yong, K. L. Multiple myeloma. The Lancet 397, 410–427. https://doi.org/10.1016/s0140-6736(21)00135-5 (2021).
Google Scholar
Kumar, S. K. et al. Early relapse after autologous hematopoietic cell transplantation remains a poor prognostic factor in multiple myeloma but outcomes have improved over time. Leukemia 32, 986–995. https://doi.org/10.1038/leu.2017.331 (2017).
Google Scholar
Bazarbachi, A. H., Al Hamed, R., Malard, F., Harousseau, J.-L. & Mohty, M. Relapsed refractory multiple myeloma: a comprehensive overview. Leukemia 33, 2343–2357. https://doi.org/10.1038/s41375-019-0561-2 (2019).
Google Scholar
Badros, A. Z. et al. Carfilzomib in multiple myeloma patients with renal impairment: pharmacokinetics and safety. Leukemia 27, 1707–1714. https://doi.org/10.1038/leu.2013.29 (2013).
Google Scholar
Wang, Z. et al. Clinical pharmacokinetics, metabolism, and drug-drug interaction of carfilzomib. Drug Metab. Dispos. 41, 230–237. https://doi.org/10.1124/dmd.112.047662 (2013).
Google Scholar
Watanabe, T. et al. A phase 1/2 study of carfilzomib in Japanese patients with relapsed and/or refractory multiple myeloma. Br. J. Haematol. 172, 745–756. https://doi.org/10.1111/bjh.13900 (2016).
Google Scholar
Hurchla, M. A. et al. The epoxyketone-based proteasome inhibitors carfilzomib and orally bioavailable oprozomib have anti-resorptive and bone-anabolic activity in addition to anti-myeloma effects. Leukemia 27, 430–440. https://doi.org/10.1038/leu.2012.183 (2013).
Google Scholar
Eda, H. et al. A novel Bruton’s tyrosine kinase inhibitor CC-292 in combination with the proteasome inhibitor carfilzomib impacts the bone microenvironment in a multiple myeloma model with resultant antimyeloma activity. Leukemia 28, 1892–1901. https://doi.org/10.1038/leu.2014.69 (2014).
Google Scholar
Hawley, T. S. et al. Identification of an ABCB1 (P-glycoprotein)-positive carfilzomib-resistant myeloma subpopulation by the pluripotent stem cell fluorescent dye CDy1. Am. J. Hematol. 88, 265–272. https://doi.org/10.1002/ajh.23387 (2013).
Google Scholar
Moreau, P. et al. Subcutaneous versus intravenous administration of bortezomib in patients with relapsed multiple myeloma: a randomised, phase 3, non-inferiority study. Lancet Oncol. 12, 431–440. https://doi.org/10.1016/S1470-2045(11)70081-X (2011).
Google Scholar
Clemens, J. et al. Cellular uptake kinetics of bortezomib in relation to efficacy in myeloma cells and the influence of drug transporters. Cancer Chemother. Pharmacol. 75, 281–291. https://doi.org/10.1007/s00280-014-2643-1 (2015).
Google Scholar
Garcia-Gomez, A. et al. Preclinical activity of the oral proteasome inhibitor MLN9708 in Myeloma bone disease. Clin. Cancer Res. 20, 1542–1554. https://doi.org/10.1158/1078-0432.CCR-13-1657 (2014).
Google Scholar
Wong, K. Y., Wan, T. S., So, C. C. & Chim, C. S. Establishment of a bortezomib-resistant Chinese human multiple myeloma cell line: MMLAL. Cancer Cell Int. 13, 122. https://doi.org/10.1186/1475-2867-13-122 (2013).
Google Scholar
Gupta, N. et al. A pharmacokinetics and safety phase 1/1b study of oral ixazomib in patients with multiple myeloma and severe renal impairment or end-stage renal disease requiring haemodialysis. Br. J. Haematol. 174, 748–759. https://doi.org/10.1111/bjh.14125 (2016).
Google Scholar
Richardson, P. G. et al. Phase 1 study of twice-weekly ixazomib, an oral proteasome inhibitor, in relapsed/refractory multiple myeloma patients. Blood 124, 1038–1046. https://doi.org/10.1182/blood-2014-01-548826 (2014).
Google Scholar
Chauhan, D. et al. In vitro and in vivo selective antitumor activity of a novel orally bioavailable proteasome inhibitor MLN9708 against multiple myeloma cells. Clin. Cancer Res. 17, 5311–5321. https://doi.org/10.1158/1078-0432.CCR-11-0476 (2011).
Google Scholar
Savelieva, M. et al. Population pharmacokinetics of intravenous and oral panobinostat in patients with hematologic and solid tumors. Eur. J. Clin. Pharmacol. 71, 663–672. https://doi.org/10.1007/s00228-015-1846-7 (2015).
Google Scholar
Mu, S. et al. Panobinostat PK/PD profile in combination with bortezomib and dexamethasone in patients with relapsed and relapsed/refractory multiple myeloma. Eur. J. Clin. Pharmacol. 72, 153–161. https://doi.org/10.1007/s00228-015-1967-z (2016).
Google Scholar
Maiso, P. et al. The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res. 66, 5781–5789. https://doi.org/10.1158/0008-5472.CAN-05-4186 (2006).
Google Scholar
Catley, L. et al. Aggresome induction by proteasome inhibitor bortezomib and alpha-tubulin hyperacetylation by tubulin deacetylase (TDAC) inhibitor LBH589 are synergistic in myeloma cells. Blood 108, 3441–3449. https://doi.org/10.1182/blood-2006-04-016055 (2006).
Google Scholar
Hofmeister, C. C. et al. Phase I trial of lenalidomide and CCI-779 in patients with relapsed multiple myeloma: evidence for lenalidomide-CCI-779 interaction via P-glycoprotein. J. Clin. Oncol.. 29, 3427–3434. https://doi.org/10.1200/JCO.2010.32.4962 (2011).
Google Scholar
Hou, J. et al. A multicenter, open-label, phase 2 study of lenalidomide plus low-dose dexamethasone in Chinese patients with relapsed/refractory multiple myeloma: the MM-021 trial. J. Hematol. Oncol. 6, 41. https://doi.org/10.1186/1756-8722-6-41 (2013).
Google Scholar
Richardson, P. G. et al. Immunomodulatory drug CC-5013 overcomes drug resistance and is well tolerated in patients with relapsed multiple myeloma. Blood 100, 3063–3067. https://doi.org/10.1182/blood-2002-03-0996 (2002).
Google Scholar
Xu, Q. et al. Expression of the cereblon binding protein argonaute 2 plays an important role for multiple myeloma cell growth and survival. BMC Cancer 16, 297. https://doi.org/10.1186/s12885-016-2331-0 (2016).
Google Scholar
Greenberg, A. J., Walters, D. K., Kumar, S. K., Rajkumar, S. V. & Jelinek, D. F. Responsiveness of cytogenetically discrete human myeloma cell lines to lenalidomide: lack of correlation with cereblon and interferon regulatory factor 4 expression levels. Eur. J. Haematol. 91, 504–513. https://doi.org/10.1111/ejh.12192 (2013).
Google Scholar
Matsue, K. et al. Pomalidomide alone or in combination with dexamethasone in Japanese patients with refractory or relapsed and refractory multiple myeloma. Cancer Sci. 106, 1561–1567. https://doi.org/10.1111/cas.12772 (2015).
Google Scholar
Rychak, E. et al. Pomalidomide in combination with dexamethasone results in synergistic anti-tumour responses in pre-clinical models of lenalidomide-resistant multiple myeloma. Br. J. Haematol. 172, 889–901. https://doi.org/10.1111/bjh.13905 (2016).
Google Scholar
Guglielmelli, T. et al. mTOR pathway activation in multiple myeloma cell lines and primary tumour cells: pomalidomide enhances cytoplasmic-nuclear shuttling of mTOR protein. Oncoscience 2, 382–394. https://doi.org/10.18632/oncoscience.148 (2015).
Google Scholar
Iida, S. et al. Lenalidomide plus dexamethasone treatment in Japanese patients with relapsed/refractory multiple myeloma. Int. J. Hematol. 92, 118–126. https://doi.org/10.1007/s12185-010-0624-7 (2010).
Google Scholar
Mao, X. et al. A chemical biology screen identifies glucocorticoids that regulate c-maf expression by increasing its proteasomal degradation through up-regulation of ubiquitin. Blood 110, 4047–4054. https://doi.org/10.1182/blood-2007-05-088666 (2007).
Google Scholar
Stewart, H. J., Kishikova, L., Powell, F. L., Wheatley, S. P. & Chevassut, T. J. The polo-like kinase inhibitor BI 2536 exhibits potent activity against malignant plasma cells and represents a novel therapy in multiple myeloma. Exp. Hematol. 39, 330–338. https://doi.org/10.1016/j.exphem.2010.12.006 (2011).
Google Scholar
Chen, Y. H. et al. Inhibition of myeloma cell growth by dexamethasone and all-trans retinoic acid: synergy through modulation of interleukin-6 autocrine loop at multiple sites. Blood 87, 314–323 (1996).
Google Scholar
Friday, E., Ledet, J. & Turturro, F. Response to dexamethasone is glucose-sensitive in multiple myeloma cell lines. J. Exp. Clin. Cancer Res. 30, 81. https://doi.org/10.1186/1756-9966-30-81 (2011).
Google Scholar
Dorr, R. T. et al. Comparative pharmacokinetic study of high-dose etoposide and etoposide phosphate in patients with lymphoid malignancy receiving autologous stem cell transplantation. Bone Marrow Transpl. 31, 643–649. https://doi.org/10.1038/sj.bmt.1703906 (2003).
Google Scholar
Osby, E., Liliemark, E., Bjorkholm, M. & Liliemark, J. Oral etoposide in patients with hematological malignancies: a clinical and pharmacokinetic study. Med. Oncol. 18, 269–275. https://doi.org/10.1385/MO:18:4:269 (2001).
Google Scholar
Dvorakova, K. et al. Molecular and cellular characterization of imexon-resistant RPMI8226/I myeloma cells. Mol Cancer Ther. 1, 185–195 (2002).
Google Scholar
Dimberg, L. Y. et al. Stat1 activation attenuates IL-6 induced Stat3 activity but does not alter apoptosis sensitivity in multiple myeloma. BMC Cancer 12, 318. https://doi.org/10.1186/1471-2407-12-318 (2012).
Google Scholar
Demel, H. R. et al. Effects of topoisomerase inhibitors that induce DNA damage response on glucose metabolism and PI3K/Akt/mTOR signaling in multiple myeloma cells. Am. J. Cancer Res. 5, 1649–1664 (2015).
Google Scholar
Orlowski, R. Z. et al. Phase 1 trial of the proteasome inhibitor bortezomib and pegylated liposomal doxorubicin in patients with advanced hematologic malignancies. Blood 105, 3058–3065. https://doi.org/10.1182/blood-2004-07-2911 (2005).
Google Scholar
Shushanov, S. S. & Kravtsova, T. A. Cytotoxic effect of doxorubicin on human multiple myeloma cells in vitro. Bull. Exp. Biol. Med. 155, 228–232. https://doi.org/10.1007/s10517-013-2120-6 (2013).
Google Scholar
Zhang, H., Chen, J., Zeng, Z., Que, W. & Zhou, L. Knockdown of DEPTOR induces apoptosis, increases chemosensitivity to doxorubicin and suppresses autophagy in RPMI-8226 human multiple myeloma cells in vitro. Int. J. Mol. Med. 31, 1127–1134. https://doi.org/10.3892/ijmm.2013.1299 (2013).
Google Scholar
Saha, M. N., Chen, Y., Chen, M. H., Chen, G. & Chang, H. Small molecule MIRA-1 induces in vitro and in vivo anti-myeloma activity and synergizes with current anti-myeloma agents. Br. J. Cancer 110, 2224–2231. https://doi.org/10.1038/bjc.2014.164 (2014).
Google Scholar
Egerer, G. et al. The NK(1) receptor antagonist aprepitant does not alter the pharmacokinetics of high-dose melphalan chemotherapy in patients with multiple myeloma. Br. J. Clin. Pharmacol. 70, 903–907. https://doi.org/10.1111/j.1365-2125.2010.03792.x (2010).
Google Scholar
Osterborg, A., Ehrsson, H., Eksborg, S., Wallin, I. & Mellstedt, H. Pharmacokinetics of oral melphalan in relation to renal function in multiple myeloma patients. Eur. J. Cancer Clin. Oncol. 25, 899–903. https://doi.org/10.1016/0277-5379(89)90138-7 (1989).
Google Scholar
Ray, A. et al. A novel alkylating agent Melflufen induces irreversible DNA damage and cytotoxicity in multiple myeloma cells. Br. J. Haematol. 174, 397–409. https://doi.org/10.1111/bjh.14065 (2016).
Google Scholar
Cukrova, V., Neuwirtova, R., Cermak, J. & Neuwirt, J. Inhibitor of normal granulopoiesis produced by cells of MDS patients. Neoplasma 36, 83–89 (1989).
Google Scholar
Mandl-Weber, S. et al. The novel inhibitor of histone deacetylase resminostat (RAS2410) inhibits proliferation and induces apoptosis in multiple myeloma (MM) cells. Br. J. Haematol. 149, 518–528. https://doi.org/10.1111/j.1365-2141.2010.08124.x (2010).
Google Scholar
Harrison, R. K. Phase II and phase III failures: 2013–2015. Nat. Rev. Drug Discov. 15, 817–818. https://doi.org/10.1038/nrd.2016.184 (2016).
Google Scholar
Silva, A. et al. An Ex Vivo Platform for the Prediction of Clinical Response in Multiple Myeloma. Cancer Res. 77, 3336–3351. https://doi.org/10.1158/0008-5472.CAN-17-0502 (2017).
Google Scholar
Papadimitriou, K. et al. Ex Vivo Models Simulating the Bone Marrow Environment and Predicting Response to Therapy in Multiple Myeloma. Cancers (Basel) 12, https://doi.org/10.3390/cancers12082006 (2020).
Sudalagunta, P. et al. A pharmacodynamic model of clinical synergy in multiple myeloma. EBioMedicine 54, 102716. https://doi.org/10.1016/j.ebiom.2020.102716 (2020).
Google Scholar
Walker, Z. J. et al. Measurement of ex vivo resistance to proteasome inhibitors, IMiDs, and daratumumab during multiple myeloma progression. Blood Adv. 4, 1628–1639. https://doi.org/10.1182/bloodadvances.2019000122 (2020).
Google Scholar
Muz, B. et al. CXCR4-targeted PET imaging using (64)Cu-AMD3100 for detection of Waldenström Macroglobulinemia. Cancer Biol. Ther. 21, 52–60. https://doi.org/10.1080/15384047.2019.1665405 (2020).
Google Scholar
de la Puente, P. et al. Enhancing proteasome-inhibitory activity and specificity of bortezomib by CD38 targeted nanoparticles in multiple myeloma. J. Control. Release 270, 158–176. https://doi.org/10.1016/j.jconrel.2017.11.045 (2018).
Google Scholar
Federico, C. et al. Localized Delivery of Cisplatin to Cervical Cancer Improves Its Therapeutic Efficacy and Minimizes Its Side Effect Profile. Int. J. Radiat. Oncol. Biol. Phys. 109, 1483–1494. https://doi.org/10.1016/j.ijrobp.2020.11.052 (2021).
Google Scholar
Muz, B. et al. A CD138-independent strategy to detect minimal residual disease and circulating tumour cells in multiple myeloma. Br. J. Haematol. 173, 70–81. https://doi.org/10.1111/bjh.13927 (2016).
Google Scholar
Rajkumar, S. V. et al. International Myeloma Working Group updated criteria for the diagnosis of multiple myeloma. Lancet Oncol. 15, e538-548. https://doi.org/10.1016/S1470-2045(14)70442-5 (2014).
Google Scholar

