Milenic, D. E., Brady, E. D. & Brechbiel, M. W. Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. 3, 488–498 (2004).
Google Scholar
Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).
Google Scholar
Danino, T. et al. Programmable probiotics for non-invasive urinary detection of cancer. Sci. Transl. Med. 7, 289ra84 (2015).
Google Scholar
Claesen, J. & Fischbach, M. A. Synthetic microbes as drug delivery systems. ACS Synth. Biol. 4, 358–364 (2015).
Google Scholar
Daniel, C., Roussel, Y., Kleerebezem, M. & Pot, B. Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends Biotechnol. 29, 499–508 (2011).
Google Scholar
Steidler, L. et al. Treatment of murine colitis by Lactococcus lactus secreting interleukin-10. Adv. Sci. 289, 1352–1355 (2011).
Davili, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).
Google Scholar
Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2016).
Google Scholar
Scheller, L. & Fussenegger, M. From synthetic biology to human therapy: engineered mammalian cells. Curr. Opin. Biotechnol. 58, 108–116 (2019).
Google Scholar
Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).
Google Scholar
Walsby, A. E. Gas vesicles. Annu. Rev. Plant Physiol. 26, 427–439 (1975).
Google Scholar
Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10, 705–715 (2012).
Google Scholar
Dutka, P. et al. Measuring gas vesicle dimensions by electron microscopy. Protein Sci. 30, 1081–1086 (2021).
Google Scholar
Shapiro, M. G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 9, 311–316 (2014).
Google Scholar
Lu, G. J. et al. Imaging of gas-filled protein nanostructures. Nat. Mater. 17, 456–463 (2018).
Google Scholar
Shapiro, M. G. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat. Chem. 6, 629–634 (2014).
Google Scholar
Lakshmanan, A. et al. Molecular engineering of acoustic protein nanostructures. ACS Nano 10, 7314–7322 (2016).
Google Scholar
Kunth, M., Lu, G. J., Witte, C., Shapiro, M. G. & Schro, L. Protein nanostructures produce self-adjusting hyperpolarized magnetic resonance imaging contrast through physical gas partitioning. ACS Nano 11, 10939–10948 (2018).
Google Scholar
Maresca, D., Sawyer, D. P., Renaud, G., Lee-Gosselin, A. & Shapiro, M. G. Nonlinear X-wave ultrasound imaging of acoustic biomolecules. Phys. Rev. X 8, 41002 (2018).
Google Scholar
Maresca, D. et al. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. Appl. Phys. Lett. 110, 0073704 (2017).
Google Scholar
Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).
Google Scholar
Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).
Google Scholar
Airan, R. D. et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 17, 652–659 (2017).
Google Scholar
Kwan, J. J. et al. Ultrasound-propelled nanocups for drug delivery. Small 11, 5305–5314 (2015).
Google Scholar
Kwan, J. J. et al. Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles. Phys. Rev. E 92, 023019 (2015).
Google Scholar
Ferrara, K., Pollard, R. & Borden, M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007).
Google Scholar
Kooiman, K., Vos, H. J., Versluis, M. & De Jong, N. Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Deliv. Rev. 72, 28–48 (2014).
Google Scholar
Kotopoulis, S., Dimcevski, G., Gilja, O. H., Hoem, D. & Postema, M. Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. Med. Phys. 40, 072902 (2013).
Google Scholar
Sheeran, P. S. & Dayton, P. A. Phase-change contrast agents for imaging and therapy. Curr. Pharm. Des. 18, 2152–2165 (2012).
Google Scholar
Kripfgans, O. D., Fowlkes, J. B., Miller, D. L., Eldevik, O. P. & Carson, P. L. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol. Biol. 26, 1177–1189 (2000).
Google Scholar
Köse, G., Darguzyte, M. & Kiessling, F. Molecular ultrasound imaging. Nanomaterials 10, 1935 (2020).
Google Scholar
Woudstra, L. et al. Development of a new therapeutic technique to direct stem cells to the infarcted heart using targeted microbubbles: StemBells. Stem Cell Res. 17, 6–15 (2016).
Google Scholar
Ashokkumar, M., Lee, J., Kentish, S. & Grieser, F. Bubbles in an acoustic field: an overview. Ultrason. Sonochem. 14, 470–475 (2007).
Google Scholar
Coussios, C. C. & Roy, R. A. Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev Fluid Mech. 40, 395–420 (2008).
Google Scholar
Szabo, T. L. Diagnostic Ultrasound Imaging: Inside Out (Academic, 2004).
Tran, B. C., Seo, J., Hall, T. L., Fowlkes, J. B. & Cain, C. A. Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1296–1304 (2003).
Google Scholar
Church, C. C. Frequency, pulse length, and the mechanical index. Acoust. Res. Lett. 6, 162 (2007).
Google Scholar
Holland, C. K. & Apfel, R. E. An improved theory for the prediction of microcavitation thresholds. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 204–208 (1989).
Google Scholar
Cherin, E. et al. Acoustic behavior of Halobacterium salinarum gas vesicles in the high-frequency range: experiments and modeling. Ultrasound Med. Biol. 43, 1016–1030 (2017).
Google Scholar
Walsby, A. E. The pressure relationships of gas vacuoles. Proc. R. Soc. Lond. B 178, 301–326 (1971).
Google Scholar
Lakshmanan, A. et al. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat. Protocols 12, 2050–2080 (2017).
Google Scholar
Le Floc’h, J. et al. In vivo biodistribution of radiolabeled acoustic protein nanostructures. Mol. Imaging Biol. 20, 230–239 (2018).
Google Scholar
Duong, M. T. Q., Qin, Y., You, S. H. & Min, J. J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp. Mol. Med. 51, 1–15 (2019).
Google Scholar
Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W. & Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acad. Sci. USA 98, 15155–15160 (2001).
Google Scholar
Leschner, S. et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PLoS ONE 4, e6692 (2009).
Google Scholar
Kang, S.-R. et al. Imaging of tumor colonization by Escherichia coli using 18F-FDS PET. Theranostics 10, 4958–4966 (2020).
Google Scholar
Gurbatri, C. R. et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. 12, eaax0876 (2020).
Google Scholar
Jiang, S.-N. et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol. Ther. 18, 635–642 (2010).
Google Scholar
Ryan, R. M. et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 16, 329–339 (2009).
Google Scholar
Groot, A. J. et al. Functional antibodies produced by oncolytic clostridia. Biochem. Biophys. Res. Commun. 364, 985–989 (2007).
Google Scholar
Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11, 2739 (2020).
Google Scholar
Hurt, R. C. et al. Genomically mined acoustic reporter genes enable on-demand in vivo monitoring of tumor-homing bacteria. Preprint at bioRxiv https://doi.org/10.1101/2021.04.26.441537 (2021).
Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499–502 (2015).
Google Scholar
Eranki, A. et al. High-intensity focused ultrasound (hIFU) triggers immune sensitization of refractory murine neuroblastoma to checkpoint inhibitor therapy. Clin. Cancer Res. 26, 1152–1161 (2020).
Google Scholar
Qu, S. et al. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J. Immunother. Cancer 8, 1–12 (2020).
Google Scholar
Chavez, M. et al. Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics 8, 3611–3628 (2018).
Google Scholar
Häcker, G., Redecke, V. & Häcker, H. Activation of the immune system by bacterial CpG-DNA. Immunology 105, 245–251 (2002).
Google Scholar
Forbes, N. S., Munn, L. L., Fukumura, D. & Jain, R. K. Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res. 63, 5188–5193 (2003).
Google Scholar
Ling, B. et al. Biomolecular ultrasound imaging of phagolysosomal function. ACS Nano 14, 12210–12221 (2020).
Google Scholar
Jang, M. J. & Nam, Y. NeuroCa: integrated framework for systematic analysis of spatiotemporal neuronal activity patterns from large-scale optical recording data. Neurophotonics 2, 035003 (2015).
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).
Google Scholar
Bar-Zion, A., Yin, M., Adam, D. & Foster, F. S. Functional flow patterns and static blood pooling in tumors revealed by combined contrast-enhanced ultrasound and photoacoustic imaging. Cancer Res. 76, 4320–4331 (2016).
Google Scholar

