Preloader

Acoustically triggered mechanotherapy using genetically encoded gas vesicles

  • 1.

    Milenic, D. E., Brady, E. D. & Brechbiel, M. W. Antibody-targeted radiation cancer therapy. Nat. Rev. Drug Discov. 3, 488–498 (2004).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Din, M. O. et al. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536, 81–85 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Danino, T. et al. Programmable probiotics for non-invasive urinary detection of cancer. Sci. Transl. Med. 7, 289ra84 (2015).

    Article 
    CAS 

    Google Scholar 

  • 4.

    Claesen, J. & Fischbach, M. A. Synthetic microbes as drug delivery systems. ACS Synth. Biol. 4, 358–364 (2015).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Daniel, C., Roussel, Y., Kleerebezem, M. & Pot, B. Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends Biotechnol. 29, 499–508 (2011).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Steidler, L. et al. Treatment of murine colitis by Lactococcus lactus secreting interleukin-10. Adv. Sci. 289, 1352–1355 (2011).

    Google Scholar 

  • 7.

    Davili, M. L. et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 6, 224ra25 (2014).

    Article 
    CAS 

    Google Scholar 

  • 8.

    Jackson, H. J., Rafiq, S. & Brentjens, R. J. Driving CAR T-cells forward. Nat. Rev. Clin. Oncol. 13, 370–383 (2016).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Scheller, L. & Fussenegger, M. From synthetic biology to human therapy: engineered mammalian cells. Curr. Opin. Biotechnol. 58, 108–116 (2019).

    CAS 
    Article 

    Google Scholar 

  • 10.

    Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol. 16, 214–225 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Walsby, A. E. Gas vesicles. Annu. Rev. Plant Physiol. 26, 427–439 (1975).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Pfeifer, F. Distribution, formation and regulation of gas vesicles. Nat. Rev. Microbiol. 10, 705–715 (2012).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Dutka, P. et al. Measuring gas vesicle dimensions by electron microscopy. Protein Sci. 30, 1081–1086 (2021).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Shapiro, M. G. et al. Biogenic gas nanostructures as ultrasonic molecular reporters. Nat. Nanotechnol. 9, 311–316 (2014).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Lu, G. J. et al. Imaging of gas-filled protein nanostructures. Nat. Mater. 17, 456–463 (2018).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Shapiro, M. G. et al. Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging. Nat. Chem. 6, 629–634 (2014).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Lakshmanan, A. et al. Molecular engineering of acoustic protein nanostructures. ACS Nano 10, 7314–7322 (2016).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Kunth, M., Lu, G. J., Witte, C., Shapiro, M. G. & Schro, L. Protein nanostructures produce self-adjusting hyperpolarized magnetic resonance imaging contrast through physical gas partitioning. ACS Nano 11, 10939–10948 (2018).

    Article 
    CAS 

    Google Scholar 

  • 19.

    Maresca, D., Sawyer, D. P., Renaud, G., Lee-Gosselin, A. & Shapiro, M. G. Nonlinear X-wave ultrasound imaging of acoustic biomolecules. Phys. Rev. X 8, 41002 (2018).

    CAS 

    Google Scholar 

  • 20.

    Maresca, D. et al. Nonlinear ultrasound imaging of nanoscale acoustic biomolecules. Appl. Phys. Lett. 110, 0073704 (2017).

    Article 
    CAS 

    Google Scholar 

  • 21.

    Bourdeau, R. W. et al. Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts. Nature 553, 86–90 (2018).

    CAS 
    Article 

    Google Scholar 

  • 22.

    Farhadi, A., Ho, G. H., Sawyer, D. P., Bourdeau, R. W. & Shapiro, M. G. Ultrasound imaging of gene expression in mammalian cells. Science 365, 1469–1475 (2019).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Airan, R. D. et al. Noninvasive targeted transcranial neuromodulation via focused ultrasound gated drug release from nanoemulsions. Nano Lett. 17, 652–659 (2017).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Kwan, J. J. et al. Ultrasound-propelled nanocups for drug delivery. Small 11, 5305–5314 (2015).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Kwan, J. J. et al. Ultrasound-induced inertial cavitation from gas-stabilizing nanoparticles. Phys. Rev. E 92, 023019 (2015).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Ferrara, K., Pollard, R. & Borden, M. Ultrasound microbubble contrast agents: fundamentals and application to gene and drug delivery. Annu. Rev. Biomed. Eng. 9, 415–447 (2007).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Kooiman, K., Vos, H. J., Versluis, M. & De Jong, N. Acoustic behavior of microbubbles and implications for drug delivery. Adv. Drug Deliv. Rev. 72, 28–48 (2014).

    CAS 
    Article 

    Google Scholar 

  • 28.

    Kotopoulis, S., Dimcevski, G., Gilja, O. H., Hoem, D. & Postema, M. Treatment of human pancreatic cancer using combined ultrasound, microbubbles, and gemcitabine: a clinical case study. Med. Phys. 40, 072902 (2013).

    Article 
    CAS 

    Google Scholar 

  • 29.

    Sheeran, P. S. & Dayton, P. A. Phase-change contrast agents for imaging and therapy. Curr. Pharm. Des. 18, 2152–2165 (2012).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Kripfgans, O. D., Fowlkes, J. B., Miller, D. L., Eldevik, O. P. & Carson, P. L. Acoustic droplet vaporization for therapeutic and diagnostic applications. Ultrasound Med. Biol. Biol. 26, 1177–1189 (2000).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Köse, G., Darguzyte, M. & Kiessling, F. Molecular ultrasound imaging. Nanomaterials 10, 1935 (2020).

    Article 
    CAS 

    Google Scholar 

  • 32.

    Woudstra, L. et al. Development of a new therapeutic technique to direct stem cells to the infarcted heart using targeted microbubbles: StemBells. Stem Cell Res. 17, 6–15 (2016).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Ashokkumar, M., Lee, J., Kentish, S. & Grieser, F. Bubbles in an acoustic field: an overview. Ultrason. Sonochem. 14, 470–475 (2007).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Coussios, C. C. & Roy, R. A. Applications of acoustics and cavitation to noninvasive therapy and drug delivery. Annu. Rev Fluid Mech. 40, 395–420 (2008).

    Article 

    Google Scholar 

  • 35.

    Szabo, T. L. Diagnostic Ultrasound Imaging: Inside Out (Academic, 2004).

  • 36.

    Tran, B. C., Seo, J., Hall, T. L., Fowlkes, J. B. & Cain, C. A. Microbubble-enhanced cavitation for noninvasive ultrasound surgery. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1296–1304 (2003).

    Article 

    Google Scholar 

  • 37.

    Church, C. C. Frequency, pulse length, and the mechanical index. Acoust. Res. Lett. 6, 162 (2007).

    Article 

    Google Scholar 

  • 38.

    Holland, C. K. & Apfel, R. E. An improved theory for the prediction of microcavitation thresholds. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 36, 204–208 (1989).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Cherin, E. et al. Acoustic behavior of Halobacterium salinarum gas vesicles in the high-frequency range: experiments and modeling. Ultrasound Med. Biol. 43, 1016–1030 (2017).

    Article 

    Google Scholar 

  • 40.

    Walsby, A. E. The pressure relationships of gas vacuoles. Proc. R. Soc. Lond. B 178, 301–326 (1971).

    Article 

    Google Scholar 

  • 41.

    Lakshmanan, A. et al. Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI. Nat. Protocols 12, 2050–2080 (2017).

    CAS 
    Article 

    Google Scholar 

  • 42.

    Le Floc’h, J. et al. In vivo biodistribution of radiolabeled acoustic protein nanostructures. Mol. Imaging Biol. 20, 230–239 (2018).

    Article 
    CAS 

    Google Scholar 

  • 43.

    Duong, M. T. Q., Qin, Y., You, S. H. & Min, J. J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp. Mol. Med. 51, 1–15 (2019).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W. & Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acad. Sci. USA 98, 15155–15160 (2001).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Leschner, S. et al. Tumor invasion of Salmonella enterica serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PLoS ONE 4, e6692 (2009).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Kang, S.-R. et al. Imaging of tumor colonization by Escherichia coli using 18F-FDS PET. Theranostics 10, 4958–4966 (2020).

    CAS 
    Article 

    Google Scholar 

  • 47.

    Gurbatri, C. R. et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Sci. Transl. Med. 12, eaax0876 (2020).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Jiang, S.-N. et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli-mediated cytolytic therapy and radiotherapy. Mol. Ther. 18, 635–642 (2010).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Ryan, R. M. et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 16, 329–339 (2009).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Groot, A. J. et al. Functional antibodies produced by oncolytic clostridia. Biochem. Biophys. Res. Commun. 364, 985–989 (2007).

    CAS 
    Article 

    Google Scholar 

  • 51.

    Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11, 2739 (2020).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Hurt, R. C. et al. Genomically mined acoustic reporter genes enable on-demand in vivo monitoring of tumor-homing bacteria. Preprint at bioRxiv https://doi.org/10.1101/2021.04.26.441537 (2021).

  • 53.

    Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499–502 (2015).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Eranki, A. et al. High-intensity focused ultrasound (hIFU) triggers immune sensitization of refractory murine neuroblastoma to checkpoint inhibitor therapy. Clin. Cancer Res. 26, 1152–1161 (2020).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Qu, S. et al. Non-thermal histotripsy tumor ablation promotes abscopal immune responses that enhance cancer immunotherapy. J. Immunother. Cancer 8, 1–12 (2020).

    Article 

    Google Scholar 

  • 56.

    Chavez, M. et al. Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics 8, 3611–3628 (2018).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Häcker, G., Redecke, V. & Häcker, H. Activation of the immune system by bacterial CpG-DNA. Immunology 105, 245–251 (2002).

    Article 

    Google Scholar 

  • 58.

    Forbes, N. S., Munn, L. L., Fukumura, D. & Jain, R. K. Sparse initial entrapment of systemically injected Salmonella typhimurium leads to heterogeneous accumulation within tumors. Cancer Res. 63, 5188–5193 (2003).

    CAS 

    Google Scholar 

  • 59.

    Ling, B. et al. Biomolecular ultrasound imaging of phagolysosomal function. ACS Nano 14, 12210–12221 (2020).

    CAS 
    Article 

    Google Scholar 

  • 60.

    Jang, M. J. & Nam, Y. NeuroCa: integrated framework for systematic analysis of spatiotemporal neuronal activity patterns from large-scale optical recording data. Neurophotonics 2, 035003 (2015).

    Article 

    Google Scholar 

  • 61.

    Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671–675 (2012).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Bar-Zion, A., Yin, M., Adam, D. & Foster, F. S. Functional flow patterns and static blood pooling in tumors revealed by combined contrast-enhanced ultrasound and photoacoustic imaging. Cancer Res. 76, 4320–4331 (2016).

    CAS 
    Article 

    Google Scholar 

  • Source link