Preloader

Biosynthesis of zinc oxide nanoparticles using Phoenix dactylifera and their effect on biomass and phytochemical compounds in Juniperus procera

  • 1.

    Vélez, M. A., Perotti, M. C., Santiago, L., Gennaro, A. M. & Hynes, E. Nutrient Delivery 221–250 (Elsevier, 2017).

    Book 

    Google Scholar 

  • 2.

    Bera, A. & Belhaj, H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery—A comprehensive review. J. Nat. Gas Sci. Eng. 34, 1284–1309 (2016).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Frewer, L. J. et al. Consumer attitudes towards nanotechnologies applied to food production. Trends Food Sci. Technol. 40, 211–225 (2014).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Syedmoradi, L. et al. Point of care testing: The impact of nanotechnology. Biosens. Bioelectron. 87, 373–387 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 5.

    Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Charinpanitkul, T., Faungnawakij, K. & Tanthapanichakoon, W. Review of recent research on nanoparticle production in Thailand. Adv. Powder Technol. 19, 443–457 (2008).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Awwad, A. M., Salem, N. M. & Abdeen, A. O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem. 4, 29 (2013).

    Article 

    Google Scholar 

  • 8.

    Vijayan, S. R. et al. Seaweeds: A resource for marine bionanotechnology. Enzyme Microb. Technol. 95, 45–57 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 9.

    Abdelgawad, A. Tamarix nilotica (ehrenb) bunge: A review of phytochemistry and pharmacology. J. Microb. Biochem. Technol. 1, 544–553 (2017).

    Google Scholar 

  • 10.

    Ahmed, S., Ahmad, M., Swami, B. L. & Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 7, 17–28 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Mittal, A. K., Chisti, Y. & Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 12.

    Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M. & da Silva Crespo, J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharmacy 15, 100223 (2020).

    Article 

    Google Scholar 

  • 13.

    Ahmed, S., Chaudhry, S. A. & Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B 166, 272–284 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Mousavi Kouhi, S. & Lahouti, M. Application of ZnO nanoparticles for inducing callus in tissue culture of rapeseed. Int. J. Nanosci. Nanotechnol. 14, 133–141 (2018).

    Google Scholar 

  • 15.

    Kavianifar, S., Ghodrati, K., Naghdi Badi, H. & Etminan, A. Effects of nano elicitors on callus induction and mucilage production in tissue culture of Linum usitatissimum L. J. Med. Plants 17, 45–54 (2018).

    Google Scholar 

  • 16.

    Marslin, G., Sheeba, C. J. & Franklin, G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant Sci. 8, 832 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 17.

    Abdel-Lateif, K., Bogusz, D. & Hocher, V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal. Behav. 7, 636–641 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 18.

    Mujwah, A. A., Mohammed, M. A. & Ahmed, M. H. First isolation of a flavonoid from Juniperus procera using ethyl acetate extract. Arab. J. Chem. 3, 85–88 (2010).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Fernández-Acero, F. et al. Screening study of potential lead compounds for natural product-based fungicides against Phytophthora species. J. Phytopathol. 154, 616–621 (2006).

    Article 

    Google Scholar 

  • 20.

    Tumen, I., Eller, F. J., Clausen, C. A. & Teel, J. A. Antifungal activity of heartwood extracts from three Juniperus species. BioResources 8, 12–20 (2013).

    Google Scholar 

  • 21.

    Abdel Ghany, T. & Hakamy, O. M. Juniperus procera as food safe additive, their antioxidant, anticancer and antimicrobial activity against some food-borne bacteria. J. Biol. Chem. Research 31, 668–677 (2014).

    Google Scholar 

  • 22.

    Hussain, M. S. et al. Current approaches toward production of secondary plant metabolites. J. Pharmacy Bioall. Sci. 4, 10 (2012).

    Article 
    CAS 

    Google Scholar 

  • 23.

    Karuppusamy, S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 3, 1222–1239 (2009).

    CAS 

    Google Scholar 

  • 24.

    Espinosa-Leal, C. A., Puente-Garza, C. A. & García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 248, 1–18 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Silva, N. & Fernandes Júnior, A. Biological properties of medicinal plants: A review of their antimicrobial activity. J. Venom. Anim. Toxins Trop. Dis. 16, 402–413 (2010).

    Article 

    Google Scholar 

  • 26.

    Borges, D. F. et al. Formulation of botanicals for the control of plant-pathogens: A review. Crop Prot. 110, 135–140 (2018).

    ADS 
    Article 

    Google Scholar 

  • 27.

    Mulabagal, V. & Tsay, H.-S. Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. Int. J. Appl. Sci. Eng. 2, 29–48 (2004).

    Google Scholar 

  • 28.

    Laid, T. M., Abdelhamid, K., Eddine, L. S. & Abderrhmane, B. Optimizing the biosynthesis parameters of iron oxide nanoparticles using central composite design. J. Mol. Struct. 1229, 129497 (2021).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Salih, A. M. et al. Mass propagation of Juniperus procera Hoechst. Ex Endl. From seedling and screening of bioactive compounds in shoot and callus extract. BMC Plant Biol. 21, 1–13 (2021).

    Article 
    CAS 

    Google Scholar 

  • 30.

    Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1 (1949).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 31.

    Jogeswar, G. et al. Antioxidative response in different sorghum species under short-term salinity stress. Acta Physiol. Plant. 28, 465–475 (2006).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Marklund, S. & Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474 (1974).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 33.

    Claiborne, A. (CRC Press (Fla, 1985).

    Google Scholar 

  • 34.

    Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880 (1981).

    CAS 

    Google Scholar 

  • 35.

    Bates, L. S., Waldren, R. P. & Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Ordonez, A., Gomez, J. & Vattuone, M. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 97, 452–458 (2006).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Ainsworth, E. A. & Gillespie, K. M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2, 875–877 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 38.

    Jamdagni, P., Khatri, P. & Rana, J. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ.-Sci. 30, 168–175 (2018).

    Article 

    Google Scholar 

  • 39.

    Sharmila, G. et al. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. J. Nanostruct. Chem. 8, 293–299 (2018).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Nadia, D., Gali, L., Arbah, R. & Abdessamed, A. green synthesis of ZnO nanoparticles using phoenix dactylifera. l. leaf extract: effect of zinc acetate concentration on the type of product. (2019).

  • 41.

    Alharby, H. F., Metwali, E. M., Fuller, M. P. & Aldhebiani, A. Y. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill) under salt stress. Arch. Biol. Sci. 68, 723–735 (2016).

    Article 

    Google Scholar 

  • 42.

    Syama, S., Reshma, S., Sreekanth, P., Varma, H. & Mohanan, P. Effect of zinc oxide nanoparticles on cellular oxidative stress and antioxidant defense mechanisms in mouse liver. Toxicol. Environ. Chem. 95, 495–503 (2013).

    CAS 
    Article 

    Google Scholar 

  • 43.

    Wang, X. et al. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front. Plant Sci. 6, 1243 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Abbasifar, A., Shahrabadi, F. & ValizadehKaji, B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant Nutr. 43, 1104–1118 (2020).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Rizwan, M. et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214, 269–277 (2019).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Kato, H. In vitro assays: Tracking nanoparticles inside cells. Nat. Nanotechnol. 6, 139 (2011).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Kong, X. Y. & Wang, Z. L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625–1631 (2003).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 48.

    Miralles, P., Church, T. L. & Harris, A. T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. 46, 9224–9239 (2012).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 49.

    Thwala, M., Musee, N., Sikhwivhilu, L. & Wepener, V. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ. Sci. Process Impacts 15, 1830–1843 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 50.

    Lin, D. & Xing, B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42, 5580–5585 (2008).

    ADS 
    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Mazaheri-Tirani, M. & Dayani, S. In vitro effect of zinc oxide nanoparticles on Nicotiana tabacum callus compared to ZnO micro particles and zinc sulfate (ZnSO 4). Plant Cell Tissue Organ Cult. 140, 279–289 (2020).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Salama, D. M., Osman, S. A., Abd El-Aziz, M., Abd Elwahed, M. S. & Shaaban, E. Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal. Agric. Biotechnol. 18, 101083 (2019).

    Article 

    Google Scholar 

  • 53.

    Farghaly, F. A., Radi, A. A., Al-Kahtany, F. A. & Hamada, A. M. Impacts of zinc oxide nano and bulk particles on redox-enzymes of the Punica granatum callus. Sci. Rep. 10, 1–13 (2020).

    Article 
    CAS 

    Google Scholar 

  • 54.

    Verbruggen, N. & Hermans, C. Proline accumulation in plants: A review. Amino Acids 35, 753–759 (2008).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 55.

    Siddiqui, Z. A., Parveen, A., Ahmad, L. & Hashem, A. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci. Hortic. 249, 374–382 (2019).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Kumar, V. & Roy, B. K. Population authentication of the traditional medicinal plant Cassia tora L based on ISSR markers and FTIR analysis. Sci. Rep. 8, 1–11 (2018).

    ADS 

    Google Scholar 

  • 57.

    Trumbeckaite, S. et al. Effect of Ginkgo biloba extract on the rat heart mitochondrial function. J. Ethnopharmacol. 111, 512–516 (2007).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 58.

    Mehar, S. et al. Green synthesis of zinc oxide nanoparticles from Peganum harmala, and its biological potential against bacteria. Front. Nanosci. Nanotech 6, 1–5 (2019).

    Article 

    Google Scholar 

  • 59.

    Grace, S. (Blackwell, Oxford, 2005).

  • 60.

    Bors, W., Heller, W., Michel, C. & Saran, M. [36] Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods Enzymol. 186, 343–355 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 61.

    Bors, W., Michel, C. & Saran, M. [41] Flavonoid antioxidants: Rate constants for reactions with oxygen radicals. Methods Enzymol. 234, 420–429 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 62.

    Doroteo, V., Díaz, C., Terry, C. & Rojas, R. Phenolic compounds and antioxidant activity in vitro of 6 Peruvian plants. Rev. Soc. Quím. Perú 79, 13–20 (2013).

    CAS 

    Google Scholar 

  • 63.

    Na, G. & Salt, D. E. The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ. Exp. Bot. 72, 18–25 (2011).

    CAS 
    Article 

    Google Scholar 

  • Source link