Vélez, M. A., Perotti, M. C., Santiago, L., Gennaro, A. M. & Hynes, E. Nutrient Delivery 221–250 (Elsevier, 2017).
Google Scholar
Bera, A. & Belhaj, H. Application of nanotechnology by means of nanoparticles and nanodispersions in oil recovery—A comprehensive review. J. Nat. Gas Sci. Eng. 34, 1284–1309 (2016).
Google Scholar
Frewer, L. J. et al. Consumer attitudes towards nanotechnologies applied to food production. Trends Food Sci. Technol. 40, 211–225 (2014).
Google Scholar
Syedmoradi, L. et al. Point of care testing: The impact of nanotechnology. Biosens. Bioelectron. 87, 373–387 (2017).
Google Scholar
Khan, I., Saeed, K. & Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem. 12, 908–931 (2019).
Google Scholar
Charinpanitkul, T., Faungnawakij, K. & Tanthapanichakoon, W. Review of recent research on nanoparticle production in Thailand. Adv. Powder Technol. 19, 443–457 (2008).
Google Scholar
Awwad, A. M., Salem, N. M. & Abdeen, A. O. Green synthesis of silver nanoparticles using carob leaf extract and its antibacterial activity. Int. J. Ind. Chem. 4, 29 (2013).
Google Scholar
Vijayan, S. R. et al. Seaweeds: A resource for marine bionanotechnology. Enzyme Microb. Technol. 95, 45–57 (2016).
Google Scholar
Abdelgawad, A. Tamarix nilotica (ehrenb) bunge: A review of phytochemistry and pharmacology. J. Microb. Biochem. Technol. 1, 544–553 (2017).
Ahmed, S., Ahmad, M., Swami, B. L. & Ikram, S. A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: A green expertise. J. Adv. Res. 7, 17–28 (2016).
Google Scholar
Mittal, A. K., Chisti, Y. & Banerjee, U. C. Synthesis of metallic nanoparticles using plant extracts. Biotechnol. Adv. 31, 346–356 (2013).
Google Scholar
Bandeira, M., Giovanela, M., Roesch-Ely, M., Devine, D. M. & da Silva Crespo, J. Green synthesis of zinc oxide nanoparticles: A review of the synthesis methodology and mechanism of formation. Sustain. Chem. Pharmacy 15, 100223 (2020).
Google Scholar
Ahmed, S., Chaudhry, S. A. & Ikram, S. A review on biogenic synthesis of ZnO nanoparticles using plant extracts and microbes: A prospect towards green chemistry. J. Photochem. Photobiol. B 166, 272–284 (2017).
Google Scholar
Mousavi Kouhi, S. & Lahouti, M. Application of ZnO nanoparticles for inducing callus in tissue culture of rapeseed. Int. J. Nanosci. Nanotechnol. 14, 133–141 (2018).
Kavianifar, S., Ghodrati, K., Naghdi Badi, H. & Etminan, A. Effects of nano elicitors on callus induction and mucilage production in tissue culture of Linum usitatissimum L. J. Med. Plants 17, 45–54 (2018).
Marslin, G., Sheeba, C. J. & Franklin, G. Nanoparticles alter secondary metabolism in plants via ROS burst. Front. Plant Sci. 8, 832 (2017).
Google Scholar
Abdel-Lateif, K., Bogusz, D. & Hocher, V. The role of flavonoids in the establishment of plant roots endosymbioses with arbuscular mycorrhiza fungi, rhizobia and Frankia bacteria. Plant Signal. Behav. 7, 636–641 (2012).
Google Scholar
Mujwah, A. A., Mohammed, M. A. & Ahmed, M. H. First isolation of a flavonoid from Juniperus procera using ethyl acetate extract. Arab. J. Chem. 3, 85–88 (2010).
Google Scholar
Fernández-Acero, F. et al. Screening study of potential lead compounds for natural product-based fungicides against Phytophthora species. J. Phytopathol. 154, 616–621 (2006).
Google Scholar
Tumen, I., Eller, F. J., Clausen, C. A. & Teel, J. A. Antifungal activity of heartwood extracts from three Juniperus species. BioResources 8, 12–20 (2013).
Abdel Ghany, T. & Hakamy, O. M. Juniperus procera as food safe additive, their antioxidant, anticancer and antimicrobial activity against some food-borne bacteria. J. Biol. Chem. Research 31, 668–677 (2014).
Hussain, M. S. et al. Current approaches toward production of secondary plant metabolites. J. Pharmacy Bioall. Sci. 4, 10 (2012).
Google Scholar
Karuppusamy, S. A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J. Med. Plants Res. 3, 1222–1239 (2009).
Google Scholar
Espinosa-Leal, C. A., Puente-Garza, C. A. & García-Lara, S. In vitro plant tissue culture: Means for production of biological active compounds. Planta 248, 1–18 (2018).
Google Scholar
Silva, N. & Fernandes Júnior, A. Biological properties of medicinal plants: A review of their antimicrobial activity. J. Venom. Anim. Toxins Trop. Dis. 16, 402–413 (2010).
Google Scholar
Borges, D. F. et al. Formulation of botanicals for the control of plant-pathogens: A review. Crop Prot. 110, 135–140 (2018).
Google Scholar
Mulabagal, V. & Tsay, H.-S. Plant cell cultures-an alternative and efficient source for the production of biologically important secondary metabolites. Int. J. Appl. Sci. Eng. 2, 29–48 (2004).
Laid, T. M., Abdelhamid, K., Eddine, L. S. & Abderrhmane, B. Optimizing the biosynthesis parameters of iron oxide nanoparticles using central composite design. J. Mol. Struct. 1229, 129497 (2021).
Google Scholar
Salih, A. M. et al. Mass propagation of Juniperus procera Hoechst. Ex Endl. From seedling and screening of bioactive compounds in shoot and callus extract. BMC Plant Biol. 21, 1–13 (2021).
Google Scholar
Arnon, D. I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol. 24, 1 (1949).
Google Scholar
Jogeswar, G. et al. Antioxidative response in different sorghum species under short-term salinity stress. Acta Physiol. Plant. 28, 465–475 (2006).
Google Scholar
Marklund, S. & Marklund, G. Involvement of the superoxide anion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur. J. Biochem. 47, 469–474 (1974).
Google Scholar
Claiborne, A. (CRC Press (Fla, 1985).
Nakano, Y. & Asada, K. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880 (1981).
Google Scholar
Bates, L. S., Waldren, R. P. & Teare, I. Rapid determination of free proline for water-stress studies. Plant Soil 39, 205–207 (1973).
Google Scholar
Ordonez, A., Gomez, J. & Vattuone, M. Antioxidant activities of Sechium edule (Jacq.) Swartz extracts. Food Chem. 97, 452–458 (2006).
Google Scholar
Ainsworth, E. A. & Gillespie, K. M. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nat. Protoc. 2, 875–877 (2007).
Google Scholar
Jamdagni, P., Khatri, P. & Rana, J. Green synthesis of zinc oxide nanoparticles using flower extract of Nyctanthes arbor-tristis and their antifungal activity. J. King Saud Univ.-Sci. 30, 168–175 (2018).
Google Scholar
Sharmila, G. et al. Biosynthesis, characterization, and antibacterial activity of zinc oxide nanoparticles derived from Bauhinia tomentosa leaf extract. J. Nanostruct. Chem. 8, 293–299 (2018).
Google Scholar
Nadia, D., Gali, L., Arbah, R. & Abdessamed, A. green synthesis of ZnO nanoparticles using phoenix dactylifera. l. leaf extract: effect of zinc acetate concentration on the type of product. (2019).
Alharby, H. F., Metwali, E. M., Fuller, M. P. & Aldhebiani, A. Y. Impact of application of zinc oxide nanoparticles on callus induction, plant regeneration, element content and antioxidant enzyme activity in tomato (Solanum lycopersicum Mill) under salt stress. Arch. Biol. Sci. 68, 723–735 (2016).
Google Scholar
Syama, S., Reshma, S., Sreekanth, P., Varma, H. & Mohanan, P. Effect of zinc oxide nanoparticles on cellular oxidative stress and antioxidant defense mechanisms in mouse liver. Toxicol. Environ. Chem. 95, 495–503 (2013).
Google Scholar
Wang, X. et al. Zinc oxide nanoparticles affect biomass accumulation and photosynthesis in Arabidopsis. Front. Plant Sci. 6, 1243 (2016).
Google Scholar
Abbasifar, A., Shahrabadi, F. & ValizadehKaji, B. Effects of green synthesized zinc and copper nano-fertilizers on the morphological and biochemical attributes of basil plant. J. Plant Nutr. 43, 1104–1118 (2020).
Google Scholar
Rizwan, M. et al. Zinc and iron oxide nanoparticles improved the plant growth and reduced the oxidative stress and cadmium concentration in wheat. Chemosphere 214, 269–277 (2019).
Google Scholar
Kato, H. In vitro assays: Tracking nanoparticles inside cells. Nat. Nanotechnol. 6, 139 (2011).
Google Scholar
Kong, X. Y. & Wang, Z. L. Spontaneous polarization-induced nanohelixes, nanosprings, and nanorings of piezoelectric nanobelts. Nano Lett. 3, 1625–1631 (2003).
Google Scholar
Miralles, P., Church, T. L. & Harris, A. T. Toxicity, uptake, and translocation of engineered nanomaterials in vascular plants. Environ. Sci. Technol. 46, 9224–9239 (2012).
Google Scholar
Thwala, M., Musee, N., Sikhwivhilu, L. & Wepener, V. The oxidative toxicity of Ag and ZnO nanoparticles towards the aquatic plant Spirodela punctuta and the role of testing media parameters. Environ. Sci. Process Impacts 15, 1830–1843 (2013).
Google Scholar
Lin, D. & Xing, B. Root uptake and phytotoxicity of ZnO nanoparticles. Environ. Sci. Technol. 42, 5580–5585 (2008).
Google Scholar
Mazaheri-Tirani, M. & Dayani, S. In vitro effect of zinc oxide nanoparticles on Nicotiana tabacum callus compared to ZnO micro particles and zinc sulfate (ZnSO 4). Plant Cell Tissue Organ Cult. 140, 279–289 (2020).
Google Scholar
Salama, D. M., Osman, S. A., Abd El-Aziz, M., Abd Elwahed, M. S. & Shaaban, E. Effect of zinc oxide nanoparticles on the growth, genomic DNA, production and the quality of common dry bean (Phaseolus vulgaris). Biocatal. Agric. Biotechnol. 18, 101083 (2019).
Google Scholar
Farghaly, F. A., Radi, A. A., Al-Kahtany, F. A. & Hamada, A. M. Impacts of zinc oxide nano and bulk particles on redox-enzymes of the Punica granatum callus. Sci. Rep. 10, 1–13 (2020).
Google Scholar
Verbruggen, N. & Hermans, C. Proline accumulation in plants: A review. Amino Acids 35, 753–759 (2008).
Google Scholar
Siddiqui, Z. A., Parveen, A., Ahmad, L. & Hashem, A. Effects of graphene oxide and zinc oxide nanoparticles on growth, chlorophyll, carotenoids, proline contents and diseases of carrot. Sci. Hortic. 249, 374–382 (2019).
Google Scholar
Kumar, V. & Roy, B. K. Population authentication of the traditional medicinal plant Cassia tora L based on ISSR markers and FTIR analysis. Sci. Rep. 8, 1–11 (2018).
Google Scholar
Trumbeckaite, S. et al. Effect of Ginkgo biloba extract on the rat heart mitochondrial function. J. Ethnopharmacol. 111, 512–516 (2007).
Google Scholar
Mehar, S. et al. Green synthesis of zinc oxide nanoparticles from Peganum harmala, and its biological potential against bacteria. Front. Nanosci. Nanotech 6, 1–5 (2019).
Google Scholar
Grace, S. (Blackwell, Oxford, 2005).
Bors, W., Heller, W., Michel, C. & Saran, M. [36] Flavonoids as antioxidants: Determination of radical-scavenging efficiencies. Methods Enzymol. 186, 343–355 (1990).
Google Scholar
Bors, W., Michel, C. & Saran, M. [41] Flavonoid antioxidants: Rate constants for reactions with oxygen radicals. Methods Enzymol. 234, 420–429 (1994).
Google Scholar
Doroteo, V., Díaz, C., Terry, C. & Rojas, R. Phenolic compounds and antioxidant activity in vitro of 6 Peruvian plants. Rev. Soc. Quím. Perú 79, 13–20 (2013).
Google Scholar
Na, G. & Salt, D. E. The role of sulfur assimilation and sulfur-containing compounds in trace element homeostasis in plants. Environ. Exp. Bot. 72, 18–25 (2011).
Google Scholar

