Preloader

Evaluation of probiotic characteristics and whole genome analysis of Pediococcus pentosaceus MR001 for use as probiotic bacteria in shrimp aquaculture

  • 1.

    Farzanfar, A. The use of probiotics in shrimp aquaculture. FEMS Immunol. Med. Microbiol. 48, 149–158 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 2.

    Lakshmi, B., Viswanath, B. & Sai Gopal, D. V. R. Probiotics as Antiviral Agents in Shrimp Aquaculture. J. Pathog. 2013, 1–3 (2013).

  • 3.

    Sanchez Ortiz, A. C. et al. Isolation and characterization of potential probiotic bacteria from pustulose ark (Anadara tuberculosa) suitable for shrimp farming. Lat. Am. J. Aquat. Res. 43, 123–136 (2015).

  • 4.

    Dawood, M. A. O., Koshio, S., Abdel-Daim, M. M. & Van Doan, H. Probiotic application for sustainable aquaculture. Rev. Aquac. 11, 907–924 (2019).

    Article 

    Google Scholar 

  • 5.

    Giatsis, C. et al. Probiotic legacy effects on gut microbial assembly in tilapia larvae. Sci. Rep. 6, 1 (2016).

    Article 
    CAS 

    Google Scholar 

  • 6.

    Kumar, V., Roy, S., Meena, D. K. & Sarkar, U. K. Application of probiotics in shrimp aquaculture: Importance, mechanisms of action, and methods of administration. Rev. Fish. Sci. Aquacult. 24, 342–368 (2016).

    Article 

    Google Scholar 

  • 7.

    Zommiti, M. et al. In vitroassessment of the probiotic properties and bacteriocinogenic potential of pediococcus pentosaceus MZF16 isolated from artisanal tunisian meat “dried ossban. Front. Microbiol. 9, 1 (2018).

    Article 

    Google Scholar 

  • 8.

    Martino, M. E. et al. Genotypic and phenotypic diversity of Pediococcus pentosaceus strains isolated from food matrices and characterisation of the penocin operon. Antonie Van Leeuwenhoek 103, 1149–1163 (2013).

    PubMed 
    Article 

    Google Scholar 

  • 9.

    Truc, L. N. T. et al. Effects of feed mixed with lactic acid bacteria and carbon, nitrogen, phosphorus supplied to the water on the growth and survival rate of white leg shrimp (penaeus vannamei) infected with acute hepatopancreatic necrosis disease caused by vibrio parahaemolyticus. Biology 10 (2021).

  • 10.

    Adel, M., Yeganeh, S., Dawood, M. A. O., Safari, R. & Radhakrishnan, S. Effects of Pediococcus pentosaceus supplementation on growth performance, intestinal microflora and disease resistance of white shrimp, Litopenaeus vannamei. Aquac. Nutr. 23, 1401–1409 (2017).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Scientific Opinion on the efficacy of Bactocell (Pediococcus acidilactici) when used as a feed additive for fish. EFSA Journal 10, (2012)

  • 12.

    Pérez-Sánchez, T., Ruiz-Zarzuela, I., de Blas, I. & Balcázar, J. L. Probiotics in aquaculture: A current assessment. Rev. Aquac. 6, 133–146 (2014).

    Article 

    Google Scholar 

  • 13.

    Havarstein, L. S., Holo, H. & Nes, I. F. The leader peptide of colicin V shares consensus sequences with leader peptides that are common among peptide bacteriocins produced by Gram-positive bacteria. Microbiology 140, 2383–2389 (1994).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    McCormick, J. K., Klaenhammer, T. R. & Stiles, M. E. Colicin V can be produced by lactic acid bacteria. Lett. Appl. Microbiol. 29, 37–41 (1999).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Dai, G. et al. A ferritin-like protein with antioxidant activity in Ureaplasma urealyticum. BMC Microbiol. 15, 1 (2015).

    Article 

    Google Scholar 

  • 16.

    Coppo, L., Montano, S. J., Padilla, A. C. & Holmgren, A. Determination of glutaredoxin enzyme activity and protein S-glutathionylation using fluorescent eosin-glutathione. Anal. Biochem. 499, 24–33 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Duan, Y. et al. Oxidative stress response of the black tiger shrimp Penaeus monodon to Vibrio parahaemolyticus challenge. Fish Shellfish Immunol. 46, 354–365 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 18.

    Won, S. et al. Evaluation of potential probiotics bacillus subtilis WB60, Pediococcus pentosaceus, and Lactococcus lactis on growth performance, immune response, gut histology and immune-related genes in whiteleg shrimp, Litopenaeus vannamei. Microorganisms 8, (2020).

  • 19.

    Chai, P. C., Song, X. L., Chen, G. F., Xu, H. & Huang, J. Dietary supplementation of probiotic Bacillus PC465 isolated from the gut of Fenneropenaeus chinensis improves the health status and resistance of Litopenaeus vannamei against white spot syndrome virus. Fish Shellfish Immunol. 54, 602–611 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Wang, Y. B. Effect of probiotics on growth performance and digestive enzyme activity of the shrimp Penaeus vannamei. Aquaculture 6, 327–332 (2007).

    CAS 

    Google Scholar 

  • 21.

    Zokaeifar, H. et al. Effects of Bacillus subtilis on the growth performance, digestive enzymes, immune gene expression and disease resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol. 33, 683–689 (2012).

  • 22.

    Lovett, D. L. & Felder, D. L. Ontogenetic change in digestive enzyme activity of larval and postlarval white shrimp Penaeus setiferus (Crustacea, Decapoda, Penaeidae). Biol. Bull. 178, 144–159 (1990).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 23.

    Castex, M., Lemaire, P., Wabete, N. & Chim, L. Effect of probiotic Pediococcus acidilactici on antioxidant defences and oxidative stress of Litopenaeus stylirostris under Vibrio nigripulchritudo challenge. Fish Shellfish Immunol. 28, 622–631 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 24.

    Gamboa-Delgado, J., Molina-Poveda, C. & Cahu, C. Digestive enzyme activity and food ingesta in juvenile shrimp Litopenaeus vannamei (Boone, 1931) as a function of body weight. Aquac. Res. 34, 1403–1411 (2003).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Thongprajukaew, K. et al. Effects of dietary modified palm kernel meal on growth, feed utilization, radical scavenging activity, carcass composition and muscle quality in sex reversed Nile tilapia (Oreochromis niloticus). Aquaculture 439, 45–52 (2015).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Kamarudin, M. S., Jones, D. A., le Vay, L. & Abidin, A. Z. Ontogenetic change in digestive enzyme activity during larval development of Macrobrachium rosenbergii. Aquaculture 123, 323–333 (1994).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Zhou, X. X., Wang, Y. B., & Li, W. fen. Effect of probiotic on larvae shrimp (Penaeus vannamei) based on water quality, survival rate and digestive enzyme activities. Aquaculture 287, 349–353 (2009).

  • 28.

    Zhang, Q. et al. Dietary administration of Bacillus (B. licheniformis and B. subtilis) and isomaltooligosaccharide influences the intestinal microflora, immunological parameters and resistance against Vibrio alginolyticus in shrimp, Penaeus japonicus (Decapoda: Penaeidae). Aquac. Res. 42, 943–952 (2011).

  • 29.

    Chiu, C. H., Guu, Y. K., Liu, C. H., Pan, T. M. & Cheng, W. Immune responses and gene expression in white shrimp, Litopenaeus vannamei, induced by Lactobacillus plantarum. Fish Shellfish Immunol. 23, 364–377 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 30.

    Chen, L. et al. Intestinal immune function, antioxidant status and tight junction proteins mRNA expression in young grass carp (Ctenopharyngodon idella) fed riboflavin deficient diet. Fish Shellfish Immunol. 47, 470–484 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 31.

    Duan, Y. et al. Effect of dietary poly-β-hydroxybutyrate (PHB) on growth performance, intestinal health status and body composition of Pacific white shrimp Litopenaeus vannamei (Boone, 1931). Fish Shellfish Immunol. 60, 520–528 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 32.

    Daniels, C. L. et al. Effect of dietary Bacillus spp. and mannan oligosaccharides (MOS) on European lobster (Homarus gammarus L.) larvae growth performance, gut morphology and gut microbiota. Aquaculture 304, 49–57 (2010).

  • 33.

    Martin, G. G. & Graves, B. L. Fine structure and classification of shrimp hemocytes. J. Morphol. 185, 339–348 (1985).

    PubMed 
    Article 

    Google Scholar 

  • 34.

    Kawai, T. & Akira, S. The role of pattern-recognition receptors in innate immunity: Update on toll-like receptors. Nat. Immunol. 11, 373–384 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 35.

    Wang, X. W. & Wang, J. X. Pattern recognition receptors acting in innate immune system of shrimp against pathogen infections. Fish Shellfish Immunol. 34, 981–989 (2013).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 36.

    Sánchez-Ortiz, A. C. et al. Effect of mixed-Bacillus spp isolated from pustulose ark Anadara tuberculosa on growth, survival, viral prevalence and immune-related gene expression in shrimp Litopenaeus vannamei. Fish Shellfish Immunol. 59, 95–102 (2016).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 37.

    Maningas, M. B. B., Kondo, H., Hirono, I., Saito-Taki, T. & Aoki, T. Essential function of transglutaminase and clotting protein in shrimp immunity. Mol. Immunol. 45, 1269–1275 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 38.

    Fagutao, F. F., Maningas, M. B. B., Kondo, H., Aoki, T. & Hirono, I. Transglutaminase regulates immune-related genes in shrimp. Fish Shellfish Immunol. 32, 711–715 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 39.

    Senan, S., Prajapati, J. B. & Joshi, C. G. Whole-genome based validation of the adaptive properties of Indian origin probiotic Lactobacillus helveticus MTCC 5463. J. Sci. Food Agric. 95, 321–328 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 40.

    Grover, S., Rashmi, H. M., Srivastava, A. K. & Batish, V. K. Probiotics for human health -new innovations and emerging trends. Gut Pathogens 8, 2233–1859 (2012).

    Google Scholar 

  • 41.

    Ocaña, V. & Nader-Macías, M. E. Adhesion of Lactobacillus vaginal strains with probiotic properties to vaginal epithelial cells. Biocell 25, 265–273 (2001).

    PubMed 

    Google Scholar 

  • 42.

    Botes, M., Loos, B., Van Reenen, C. A. & Dicks, L. M. T. Adhesion of the probiotic strains Enterococcus mundtii ST4SA and Lactobacillus plantarum 423 to Caco-2 cells under conditions simulating the intestinal tract, and in the presence of antibiotics and anti-inflammatory medicaments. Arch. Microbiol. 190, 573–584 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 43.

    Xu, H., Jeong, H. S., Lee, H. Y. & Ahn, J. Assessment of cell surface properties and adhesion potential of selected probiotic strains. Lett. Appl. Microbiol. 49, 434–442 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 44.

    Ton-That, H., Marraffini, L. A. & Schneewind, O. Protein sorting to the cell wall envelope of Gram-positive bacteria. Biochim. Biophys. Acta, Mol. Cell Res. 1694, 269–278 (2004).

  • 45.

    Remus, D. M. et al. Impact of Lactobacillus plantarum sortase on target protein sorting, gastrointestinal persistence, and host immune response modulation. J. Bacteriol. 195, 502–509 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 46.

    Douillard, F. P. et al. Functional identification of conserved residues involved in Lactobacillus rhamnosus strain GG sortase specificity and pilus biogenesis. J. Biol. Chem. 289, 15764–15775 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 47.

    Westermann, C. et al. Exploring the genome sequence of Bifidobacterium bifidum S17 for potential players in host-microbe interactions. Symbiosis 58, 191–200 (2012).

    Article 
    CAS 

    Google Scholar 

  • 48.

    Lebeer, S., Vanderleyden, J. & De Keersmaecker, S. C. J. Genes and Molecules of Lactobacilli Supporting Probiotic Action. Microbiol. Mol. Biol. Rev. 72, 728–764 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 49.

    Lorca, G. L., Raya, R. R., Taranto, M. P. & De Valdez, G. F. Adaptive acid tolerance response in Lactobacillus acidophilus. Biotechnol. Lett. 20, 239–241 (1998).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Pfeiler, E. A., Azcarate-Peril, M. A. & Klaenhammer, T. R. Characterization of a novel bile-inducible operon encoding a two-component regulatory system in Lactobacillus acidophilus. J. Bacteriol. 189, 4624–4634 (2007).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 51.

    Zacharof, M. P. & Lovitt, R. W. Bacteriocins Produced by Lactic Acid Bacteria a Review Article. APCBEE Proc. 2, 50–56 (2012).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Garsa, A. K., Kumariya, R., Sood, S. K., Kumar, A. & Kapila, S. Bacteriocin production and different strategies for their recovery and purification. Probiot. Antimicrob. Prot. 6, 47–58 (2014).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Dicks, L. M. T. et al. Medical and Personal Care Applications of Bacteriocins Produced by Lactic Acid Bacteria. In Prokaryotic Antimicrobial Peptides 391–421 (2011).

  • 54.

    Foulquié Moreno, M. R., Rea, M. C., Cogan, T. M. & De Vuyst, L. Applicability of a bacteriocin-producing Enterococcus faecium as a co-culture in Cheddar cheese manufacture. Int. J. Food Microbiol. 81, 73–84 (2003).

  • 55.

    López-Cuellar, M. del R., Rodríguez-Hernández, A. I. & Chavarría-Hernández, N. LAB bacteriocin applications in the last decade. Biotechnol. and Biotechnol. Equip. 30, 1039–1050 (2016).

  • 56.

    Nilsen, T., Nes, I. F. & Holo, H. Enterolysin A, a cell wall-degrading bacteriocin from Enterococcus faecalis LMG 2333. Appl. Environ. Microbiol. 69, 2975–2984 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 57.

    Jiang, J. et al. Comparative Genomics of Pediococcus pentosaceus Isolated From Different Niches Reveals Genetic Diversity in Carbohydrate Metabolism and Immune System. Front. Microbiol. 11, 253 (2020).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Vandecraen, J., Chandler, M., Aertsen, A. & Van Houdt, R. The impact of insertion sequences on bacterial genome plasticity and adaptability. Crit. Rev. Microbiol. 43, 709–730 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 59.

    Deutscher, J., Francke, C. & Postma, P. W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiol. Mol. Biol. Rev. 70, 939–1031 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Jamal, Z. et al. Distribution and functions of phosphotransferase system genes in the genome of the lactic acid bacterium Oenococcus oeni. Appl. Environ. Microbiol. 79, 3371–3379 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 61.

    Abe, K. & Uchida, K. Correlation between depression of catabolite control of xylose metabolism and a defect in the phosphoenolpyruvate: Mannose phosphotransferase system in Pediococcus halophilus. J. Bacteriol. 171, 1793–1800 (1989).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 62.

    Monedero, V. et al. The phosphotransferase system of Lactobacillus casei: Regulation of carbon metabolism and connection to cold shock response. J. Mol. Microbiol. Biotechnol. 12, 20–32 (2006).

    Article 
    CAS 

    Google Scholar 

  • 63.

    Stevens, M. J. A., Molenaar, D., De Jong, A., De Vos, W. M. & Kleerebezem, M. Involvement of the mannose phosphotransferase system of Lactobacillus plantarum WCFS1 in peroxide stress tolerance. Appl. Environ. Microbiol. 76, 3748–3752 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • 64.

    Houot, L., Chang, S., Pickering, B. S., Absalon, C. & Watnick, P. I. The phosphoenolpyruvate phosphotransferase system regulates Vibrio cholerae biofilm formation through multiple independent pathways. J. Bacteriol. 192, 3055–3067 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 65.

    Prabhurajeshwar, C. & Chandrakanth, R. K. Probiotic potential of Lactobacilli with antagonistic activity against pathogenic strains: An in vitro validation for the production of inhibitory substances. Biomed. J. 40, 270–283 (2017).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 66.

    Del Re, B., Sgorbati, B., Miglioli, M. & Palenzona, D. Adhesion, autoaggregation and hydrophobicity of 13 strains of Bifidobacterium longum. Lett. Appl. Microbiol. 31, 438–442 (2000).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 67.

    Lowry. Lowry Protein Assay. J. Biol. Chem. 265–275 (1951).

  • 68.

    Rungruangsak-Torrissen, K., Moss, R., Andresen, L. H., Berg, A. & Waagbø, R. Different expressions of trypsin and chymotrypsin in relation to growth in Atlantic salmon (Salmo salar L.). Fish Physiol. Biochem. 32, 7–23 (2006).

  • 69.

    Areekijseree, M. et al. Temperature and pH characteristics of amylase and proteinase of adult freshwater pearl mussel, Hyriopsis (Hyriopsis) bialatus Simpson 1900. Aquaculture 234, 575–587 (2004).

    CAS 
    Article 

    Google Scholar 

  • 70.

    Xue, X. M. et al. Characterisation of cellulase activity in the digestive system of the redclaw crayfish (Cherax quadricarinatus). Aquaculture 180, 373–386 (1999).

    CAS 
    Article 

    Google Scholar 

  • 71.

    Stuckmann, M. & Winkler, U. K. Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. J. Bacteriol. 138, 663–670 (1979).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 72.

    Koren, S. et al. Canu: scalable and accurate long-read assembly via adaptive k -mer weighting and repeat separation. bioRxiv 071282, (2016).

  • 73.

    Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 75.

    Walker, B. J. et al. Pilon: An integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS One 9, (2014).

  • 76.

    Delcher, A. L., Bratke, K. A., Powers, E. C. & Salzberg, S. L. Identifying bacterial genes and endosymbiont DNA with Glimmer. Bioinformatics 23, 673–679 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 77.

    Lukashin, A. V. & Borodovsky, M. GeneMark.hmm: New solutions for gene finding. Nucl. Acids Res. 26, 1107–1115 (1998).

  • 78.

    Besemer, J. & Borodovsky, M. Heuristic approach to deriving models for gene finding. Nucl. Acids Res. 27, 3911–3920 (1999).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 79.

    Besemer, J., Lomsadze, A. & Borodovsky, M. GeneMarkS: A self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions. Nucl. Acids Res. 29, 2607–2618 (2001).

  • 80.

    Aziz, R. K. et al. The RAST Server: Rapid annotations using subsystems technology. BMC Genom. 9, 75 (2008).

    Article 
    CAS 

    Google Scholar 

  • 81.

    Overbeek, R. et al. The SEED and the Rapid Annotation of microbial genomes using Subsystems Technology (RAST). Nucl. Acids Res. 42, D206-214 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 82.

    Lowe, T. M. & Chan, P. P. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucl. Acids Res. 44, W54-57 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 83.

    Lowe, T. M. & Eddy, S. R. tRNAscan-SE: A program for improved detection of transfer RNA genes in genomic sequence. Nucl. Acids Res. 25, 955–964 (1997).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 84.

    Schattner, P., Brooks, A. N. & Lowe, T. M. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucl. Acids Res. 33, W686-689 (2005).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 85.

    Lagesen, K. et al. RNAmmer: Consistent and rapid annotation of ribosomal RNA genes. Nucl. Acids Res. 35, 3001–3008 (2007).

    Article 
    ADS 
    CAS 

    Google Scholar 

  • 86.

    Zhou, Y., Liang, Y., Lynch, K. H., Dennis, J. J. & Wishart, D. S. PHAST: A Fast Phage Search Tool. Nucl. Acids Res. 39, W347-352 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 87.

    Grissa, I., Vergnaud, G. & Pourcel, C. CRISPRFinder: A web tool to identify clustered regularly interspaced short palindromic repeats. Nucl. Acids Res. 35, W52-57 (2007).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 88.

    Grant, J. R. & Stothard, P. The CGView Server: a comparative genomics tool for circular genomes. Nucl. Acids Res. 36, W181-184 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Kearse, M. et al. Geneious Basic: An integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647–1649 (2012).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 90.

    Surachat, K., Sangket, U., Deachamag, P. & Chotigeat, W. In silico analysis of protein toxin and bacteriocins from Lactobacillus paracasei SD1 genome and available online databases. PLoS One 12, e0183548 (2017).

  • 91.

    de Jong, A., van Hijum, S. A. F. T., Bijlsma, J. J. E., Kok, J. & Kuipers, O. P. BAGEL: A web-based bacteriocin genome mining tool. Nucl. Acids Res. 34, W273-276 (2006).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 92.

    Edgar, R. C. MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucl. Acids Res. 32, 1792–1797 (2004).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Source link