Preloader

Comprehensive framework for human health risk assessment of nanopesticides

  • 1.

    FAO The Future of Food and Agriculture: Trends and Challenges (2017); https://reliefweb.int/report/world/future-food-and-agriculture-trends-and-challenges

  • 2.

    Kah, M., Tufenkji, N. & White, J. C. Nano-enabled strategies to enhance crop nutrition and protection. Nat. Nanotechnol. 14, 532–540 (2019). This review summarizes current challenges in crop nutrition and protection, and the possible solutions offered by nanotechnology.

    CAS 
    Article 

    Google Scholar 

  • 3.

    Adisa, I. O. et al. Recent advances in nano-enabled fertilizers and pesticides: a critical review of mechanisms of action. Environ. Sci. Nano 6, 2002–2030 (2019).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Kah, M., Kookana, R. S., Gogos, A. & Bucheli, T. D. A critical evaluation of nanopesticides and nanofertilizers against their conventional analogues. Nat. Nanotechnol. 13, 677–684 (2018). A critical evaluation of nanofertilizers and nanopesticides against their conventional analogues indicates that lack of information on the efficacy and environmental impact of nanoagrochemicals under field conditions is a critical knowledge gap.

    CAS 
    Article 

    Google Scholar 

  • 5.

    Camara, M. C. et al. Development of stimuli-responsive nano-based pesticides: emerging opportunities for agriculture. J. Nanobiotechnology 17, 100 (2019).

    Article 

    Google Scholar 

  • 6.

    Singh, H. et al. Recent advances in the applications of nano-agrochemicals for sustainable agricultural development. Environ. Sci. Process. Impacts 23, 213–239 (2021).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Mitter, N. et al. Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat. Plants 3, 16207 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Health Canada Policy Statement on Health Canada’s Working Definition for Nanomaterial (2011); https://www.canada.ca/en/health-canada/services/science-research/reports-publications/nanomaterial/policy-statement-health-canada-working-definition.html

  • 9.

    Miernicki, M., Hofmann, T., Eisenberger, I., Kammer, Fvonder & Praetorius, A. Legal and practical challenges in classifying nanomaterials according to regulatory definitions. Nat. Nanotechnol. 14, 208–216 (2019). The current limitations of the European Union definitions for ‘nanomaterial’ are outlined along with recommendations for a more coherent approach to classifying nanomaterials for regulatory purposes.

    CAS 
    Article 

    Google Scholar 

  • 10.

    US EPA Control of Nanoscale Materials under the Toxic Substances Control Act (2015); https://www.epa.gov/reviewing-new-chemicals-under-toxic-substances-control-act-tsca/control-nanoscale-materials-under

  • 11.

    Boverhof, D. R. et al. Comparative assessment of nanomaterial definitions and safety evaluation considerations. Regul. Toxicol. Pharmacol. 73, 137–150 (2015).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Etheridge, M. L. et al. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine 9, 1–14 (2013).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Kah, M. Nanopesticides and nanofertilizers: emerging contaminants or opportunities for risk mitigation? Front. Chem. 3, 64 (2015).

    Article 

    Google Scholar 

  • 14.

    Bocca, B. et al. Nanopesticides: physico-chemical characterization by a combination of advanced analytical techniques. Food Chem. Toxicol. 146, 111816 (2020).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Tilman, D., Cassman, K. G., Matson, P. A., Naylor, R. & Polasky, S. Agricultural sustainability and intensive production practices. Nature 418, 671–677 (2002).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Hardy, A. et al. Guidance on risk assessment of the application of nanoscience and nanotechnologies in the food and feed chain: Part 1, human and animal health. EFSA J. 16, e05327 (2018). This European Food Safety Authority guidance document provides detailed information on the physical chemical characterization and toxicological testing required for risk assessment of the impact of nanoscience and nanotechnology applications in the food and feed chain on animal and human health.

    Google Scholar 

  • 17.

    Kookana, R. S. et al. Nanopesticides: guiding principles for regulatory evaluation of environmental risks. J. Agric. Food Chem. 62, 4227–4240 (2014). This paper presents the framework for ecological risk assessment of nanopesticides.

    CAS 
    Article 

    Google Scholar 

  • 18.

    Walker, G. W. et al. Ecological risk assessment of nano-enabled pesticides: a perspective on problem formulation. J. Agric. Food Chem. 66, 6480–6486 (2018). This perspective article summarizes the relevant considerations for problem formulation in the ecological risk assessment of nanoenabled pesticides.

    CAS 
    Article 

    Google Scholar 

  • 19.

    ISO ISO/TR 19057:2017 (2017); https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/38/63836.html

  • 20.

    Gubala, V. et al. Engineered nanomaterials and human health: part 1. Preparation, functionalization and characterization (IUPAC Technical Report). Pure Appl. Chem. 90, 1283–1324 (2018).

    CAS 
    Article 

    Google Scholar 

  • 21.

    OECD Important Issues on Risk Assessment of Manufactured Nanomaterials (Series on the Safety of Manufactured Nanomaterials No. 33) (2012); http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2012)8&doclanguage=en

  • 22.

    Scientific Committee on Consumer Safety (SCCS) Guidance on the Safety Assessment of Nanomaterials in Cosmetics SCCS/1611/19 (Publications Office, 2019).

  • 23.

    Grieger, K. et al. Best practices from nano-risk analysis relevant for other emerging technologies. Nat. Nanotechnol. 14, 998–1001 (2019).

    CAS 
    Article 

    Google Scholar 

  • 24.

    International Programme on Chemical Safety (IPCS) Principles for the Assessment of Risks to Human Health from Exposure to Chemicals (1999); http://www.inchem.org/documents/ehc/ehc/ehc210.htm

  • 25.

    EC Commission Regulation (EU) No 284/2013 of 1 March 2013 Setting Out the Data Requirements for Plant Protection Products, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market (2013); https://eur-lex.europa.eu/legal-content/EN/ALL/?uri=CELEX%3A32013R0284

  • 26.

    US EPA Data Requirements for Pesticide Registration (2013); https://www.epa.gov/pesticide-registration/data-requirements-pesticide-registration

  • 27.

    EC Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC (2009).

  • 28.

    EC Commission Regulation (EU) No 283/2013 of 1 March 2013 Setting out the Data Requirements for Active Substances, in Accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council Concerning the Placing of Plant Protection Products on the Market (Text with EEA Relevance) (2013).

  • 29.

    Health Canada. Regulatory Directive (DIR2005-01) Guidelines for Developing a Toxicological Database for Chemical Pest Control Products. https://www.canada.ca/en/health-canada/services/consumer-product-safety/reports-publications/pesticides-pest-management/policies-guidelines/regulatory-directive/2005/developing-toxicological-database-chemical-pest-control-products-dir2005-01.html (2005).

  • 30.

    Shakiba, S. et al. Emerging investigator series: polymeric nanocarriers for agricultural applications: synthesis, characterization, and environmental and biological interactions. Environ. Sci. Nano 7, 37–67 (2020).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Ma, C. et al. Advanced material modulation of nutritional and phytohormone status alleviates damage from soybean sudden death syndrome. Nat. Nanotechnol. 15, 1033–1042 (2020).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Avramescu, M.-L., Chénier, M., Palaniyandi, S. & Rasmussen, P. E. Dissolution behavior of metal oxide nanomaterials in cell culture medium versus distilled water. J. Nanoparticle Res. 22, 222 (2020).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Koltermann-Jülly, J. et al. Abiotic dissolution rates of 24 (nano)forms of 6 substances compared to macrophage-assisted dissolution and in vivo pulmonary clearance: grouping by biodissolution and transformation. NanoImpact 12, 29–41 (2018).

    Article 

    Google Scholar 

  • 34.

    Health Canada Guidance for Waiving or Bridging of Mammalian Acute Toxicity Tests for Pesticides (2015); https://www.canada.ca/en/health-canada/services/consumer-product-safety/reports-publications/pesticides-pest-management/policies-guidelines/guidance-waiving-bridging-mammalian-acute-toxicity-tests-pesticides.html

  • 35.

    US EPA Bridging or Waiving Data Requirements (2020); https://www.epa.gov/pesticide-registration/bridging-or-waiving-data-requirements

  • 36.

    Gimeno-Benito, I., Giusti, A., Dekkers, S., Haase, A. & Janer, G. A review to support the derivation of a worst-case dermal penetration value for nanoparticles. Regul. Toxicol. Pharmacol. 119, 104836 (2021).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Beloqui, A., des Rieux, A. & Préat, V. Mechanisms of transport of polymeric and lipidic nanoparticles across the intestinal barrier. Adv. Drug Deliv. Rev. 106, 242–255 (2016).

    CAS 
    Article 

    Google Scholar 

  • 38.

    Paranjpe, M. & Müller-Goymann, C. C. Nanoparticle-mediated pulmonary drug delivery: a review. Int. J. Mol. Sci. 15, 5852–5873 (2014).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Steinhäuser, K. G. & Sayre, P. G. Reliability of methods and data for regulatory assessment of nanomaterial risks. NanoImpact 7, 66–74 (2017).

    Article 

    Google Scholar 

  • 40.

    Rasmussen, K., Rauscher, H., Kearns, P., González, M. & Riego Sintes, J. Developing OECD test guidelines for regulatory testing of nanomaterials to ensure mutual acceptance of test data. Regul. Toxicol. Pharmacol. 104, 74–83 (2019).

    Article 

    Google Scholar 

  • 41.

    Gao, X. & Lowry, G. V. Progress towards standardized and validated characterizations for measuring physicochemical properties of manufactured nanomaterials relevant to nano health and safety risks. NanoImpact 9, 14–30 (2018). Progress towards standardization and validation of methods to characterize the intrinsic and extrinsic properties of nanomaterials for risk assessment purposes is reviewed.

    CAS 
    Article 

    Google Scholar 

  • 42.

    Johnston, L. J., Gonzalez-Rojano, N., Wilkinson, K. J. & Xing, B. Key challenges for evaluation of the safety of engineered nanomaterials. NanoImpact 18, 100219 (2020).

    Article 

    Google Scholar 

  • 43.

    Rasmussen, K. et al. Physico-chemical properties of manufactured nanomaterials—characterisation and relevant methods. An outlook based on the OECD Testing Programme. Regul. Toxicol. Pharmacol. 92, 8–28 (2018).

    CAS 
    Article 

    Google Scholar 

  • 44.

    Sampathkumar, K., Tan, K. X. & Loo, S. C. J. Developing nano-delivery systems for agriculture and food applications with nature-derived polymers. iScience 23, 101055 (2020).

    CAS 
    Article 

    Google Scholar 

  • 45.

    Liang, D. et al. Degradation of polyacrylate in the outdoor agricultural soil measured by FTIR-PAS and LIBS. Polymers 10, 1296 (2018).

    Article 
    CAS 

    Google Scholar 

  • 46.

    Zumstein, M. T. et al. Biodegradation of synthetic polymers in soils: tracking carbon into CO2 and microbial biomass. Sci. Adv. 4, eaas9024 (2018).

    CAS 
    Article 

    Google Scholar 

  • 47.

    OECD Assessment of Biodurability of Nanomaterials and their Surface Ligands (Series on the Safety of Manufactured Nanomaterials No. 86 (2018); http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2018)11&doclanguage=enThis OECD report summarizes current in vitro and in vivo methods to measure biodurability of nanomaterials as well as the effects of surface coatings and ligands on dissolution and degradation processes.

  • 48.

    OECD Guidance Document for the Testing of Dissolution and Dispersion Stability of Nanomaterials and the Use of Data for Further Environmental Testing and Assessment Strategies (2020); http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2020)9&doclanguage=en

  • 49.

    OECD Test No. 106: Adsorption–Desorption Using a Batch Equilibrium Method (Organisation for Economic Co-Operation and Development, 2000).

  • 50.

    D’Souza, S. A review of in vitro drug release test methods for nano-sized dosage forms. Adv. Pharm. 2014, e304757 (2014).

    Google Scholar 

  • 51.

    European Nanomedicine Characterisation Laboratory (EUNCL) Verification of Expected Lipid Composition in Nanomedical Controlled Release Systems by Liquid Chromatography–Tandem Mass Spectrometry EUNCL-PCC-032 (2017).

  • 52.

    Gioria, S. et al. Are existing standard methods suitable for the evaluation of nanomedicines: some case studies. Nanomedicine 13, 539–554 (2018).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Kah, M., Weniger, A.-K. & Hofmann, T. Impacts of (nano)formulations on the fate of an insecticide in soil and consequences for environmental exposure assessment. Environ. Sci. Technol. 50, 10960–10967 (2016).

    CAS 
    Article 

    Google Scholar 

  • 54.

    Kah, M., Walch, H. & Hofmann, T. Environmental fate of nanopesticides: durability, sorption and photodegradation of nanoformulated clothianidin. Environ. Sci. Nano 5, 882–889 (2018).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Zhang, P. et al. Nanomaterial transformation in the soil–plant system: implications for food safety and application in agriculture. Small 16, 2000705 (2020).

    CAS 
    Article 

    Google Scholar 

  • 56.

    Marques, M. R. C., Loebenberg, R. & Almukainzi, M. Simulated biological fluids with possible application in dissolution testing. Dissolution Technol. 18, 15–28 (2011).

    CAS 
    Article 

    Google Scholar 

  • 57.

    Oberdörster, G. et al. Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part. Fibre Toxicol. 2, 8 (2005).

    Article 
    CAS 

    Google Scholar 

  • 58.

    OECD Developments in Delegations on the Safety of Manufactured Nanomaterials (2019); https://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2019)11&doclanguage=en

  • 59.

    OECD Test No. 428: Skin Absorption: In Vitro Method (2004); https://www.oecd-ilibrary.org/environment/test-no-428-skin-absorption-in-vitro-method_9789264071087-en

  • 60.

    EFSA. Guidance on dermal absorption. EFSA J. 10, 2665 (2012).

    Article 

    Google Scholar 

  • 61.

    Singh, N., Wills, J. W. & Doak, S. H. in Nanotoxicology 248–275 (Royal Society of Chemistry, 2017). The advantages of 3D cell culture models for in vitro nanotoxicity testing are reviewed, along with an overview of available 3D models to mimic the physiological environment of a variety of tissues and organs.

  • 62.

    OECD Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method (2020); https://www.oecd-ilibrary.org/environment/test-no-439-in-vitro-skin-irritation-reconstructed-human-epidermis-test-method_9789264242845-en

  • 63.

    OECD Test No. 431: In Vitro Skin Corrosion: Reconstructed Human Epidermis (RHE) Test Method (2014); https://www.oecd-ilibrary.org/environment/test-no-431-in-vitro-skin-corrosion-reconstructed-human-epidermis-rhe-test-method_9789264264618-en

  • 64.

    Wills, J. W. et al. Genetic toxicity assessment of engineered nanoparticles using a 3D in vitro skin model (EpiDermTM). Part. Fibre Toxicol. 13, 50 (2016).

    Article 
    CAS 

    Google Scholar 

  • 65.

    Barosova, H., Drasler, B., Petri-Fink, A. & Rothen-Rutishauser, B. Multicellular human alveolar model composed of epithelial cells and primary immune cells for hazard assessment. J. Vis. Exp. 159, e61090 (2020).

    Google Scholar 

  • 66.

    Chortarea, S. et al. Repeated exposure to carbon nanotube-based aerosols does not affect the functional properties of a 3D human epithelial airway model. Nanotoxicology 9, 983–993 (2015).

    Article 
    CAS 

    Google Scholar 

  • 67.

    Barosova, H. et al. Use of EpiAlveolar lung model to predict fibrotic potential of multiwalled carbon nanotubes. ACS Nano 14, 3941–3956 (2020).

    CAS 
    Article 

    Google Scholar 

  • 68.

    Willoughby, J. A. Predicting respiratory toxicity using a human 3D airway (EpiAirwayTM) model combined with multiple parametric analysis. Appl. Vitr. Toxicol. 1, 55–65 (2014).

    Article 
    CAS 

    Google Scholar 

  • 69.

    Evans, S. J. et al. In vitro detection of in vitro secondary mechanisms of genotoxicity induced by engineered nanomaterials. Part. Fibre Toxicol. 16, 8 (2019).

    Article 

    Google Scholar 

  • 70.

    Kämpfer, A. A. M. et al. Development of an in vitro co-culture model to mimic the human intestine in healthy and diseased state. Toxicol. Vitr. 45, 31–43 (2017).

    Article 
    CAS 

    Google Scholar 

  • 71.

    Ude, V. C., Brown, D. M., Stone, V. & Johnston, H. J. Using 3D gastrointestinal tract in vitro models with microfold cells and mucus secreting ability to assess the hazard of copper oxide nanomaterials. J. Nanobiotechnol. 17, 70 (2019).

    Article 
    CAS 

    Google Scholar 

  • 72.

    Clift, M. J. D. et al. A novel technique to determine the cell type specific response within an in vitro co-culture model via multi-colour flow cytometry. Sci. Rep. 7, 434 (2017).

    Article 
    CAS 

    Google Scholar 

  • 73.

    Modrzynska, J. et al. In vivo-induced size transformation of cerium oxide nanoparticles in both lung and liver does not affect long-term hepatic accumulation following pulmonary exposure. PLoS ONE 13, e0202477 (2018).

    Article 
    CAS 

    Google Scholar 

  • 74.

    Test No. 417: Toxicokinetics, OECD Guidelines for the Testing of Chemicals Section 4 (OECD, 2010).

  • 75.

    Toxicokinetics of Manufactured Nanomaterials: Report from the OECD Expert Meeting (OECD, 2016); http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2016)24&doclanguage=en

  • 76.

    Kah, M. & Kookana, R. Emerging investigator series: nanotechnology to develop novel agrochemicals: critical issues to consider in the global agricultural context. Environ. Sci.: Nano 7, 1867–1873 (2020).

    CAS 

    Google Scholar 

  • 77.

    Lowry, G. V., Avellan, A. & Gilbertson, L. M. Opportunities and challenges for nanotechnology in the agri-tech revolution. Nat. Nanotechnol. 14, 517–522 (2019).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Lombi, E., Donner, E., Dusinska, M. & Wickson, F. A One Health approach to managing the applications and implications of nanotechnologies in agriculture. Nat. Nanotechnol. 14, 523–531 (2019).

    CAS 
    Article 

    Google Scholar 

  • Source link