Preloader

Delivery of local anaesthetics by a self-assembled supramolecular system mimicking their interactions with a sodium channel

  • 1.

    McAlvin, J. B., Reznor, G., Shankarappa, S. A., Stefanescu, C. F. & Kohane, D. S. Local toxicity from local anesthetic polymeric microparticles. Anesth. Analg. 116, 794–803 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 2.

    Santamaria, C. M., Woodruff, A., Yang, R. & Kohane, D. S. Drug delivery systems for prolonged duration local anesthesia. Mater. Today 20, 22–31 (2017).

    CAS 
    Article 

    Google Scholar 

  • 3.

    Kohane, D. S. et al. A re-examination of tetrodotoxin for prolonged duration local anesthesia. Anesthesiology 89, 119–131 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 4.

    Lahaye, L. A. & Butterworth, J. F. IV Site-1 sodium channel blockers as local anesthetics: will neosaxitoxin supplant the need for continuous nerve blocks? Anesthesiology 123, 741–742 (2015).

    PubMed 
    Article 

    Google Scholar 

  • 5.

    Adams, H., Blair, M. Jr & Takman, B. The local anesthetic activity of saxitoxin alone and with vasoconstrictor and local anesthetic agents. Arch. Int. Pharmacodyn. Ther. 224, 275–282 (1976).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Padera, R., Bellas, E., Tse, J. Y., Hao, D. & Kohane, D. S. Local myotoxicity from sustained release of bupivacaine from microparticles. Anesthesiology 108, 921–928 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 7.

    Neal, J. M., Salinas, F. V. & Choi, D. S. Local anesthetic-induced myotoxicity after continuous adductor canal block. Reg. Anesth. Pain Med. 41, 723–727 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 8.

    Hofmann, P. et al. The myotoxic effect of bupivacaine and ropivacaine on myotubes in primary mouse cell culture and an immortalized cell line. Anesth. Analg. 117, 634–640 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 9.

    Kohane, D. S. et al. The local anesthetic properties and toxicity of saxitonin homologues for rat sciatic nerve block in vivo. Reg. Anesth. Pain Med. 25, 52–59 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 10.

    Kohane, D. S. et al. Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres. Pain 104, 415–421 (2003).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Rwei, A. Y. et al. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc. Natl Acad. Sci. USA 112, 15719–15724 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Zhan, C. et al. Ultrasensitive phototriggered local anesthesia. Nano Lett. 17, 660–665 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 13.

    Thalhammer, J., Vladimirova, M., Bershadsky, B. & Strichartz, G. Neurologic evaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology 82, 1013–1025 (1995).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 14.

    Zhan, C. et al. Phototriggered local anesthesia. Nano Lett. 16, 177–181 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 15.

    Rwei, A. Y., Zhan, C., Wang, B. & Kohane, D. S. Multiply repeatable and adjustable on-demand phototriggered local anesthesia. J. Control. Release 251, 68–74 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 16.

    Stoetzer, C. et al. Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics. Naunyn Schmiedebergs Arch. Pharmacol. 389, 625–636 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 17.

    Nau, C., Wang, S.-Y. & Wang, G. K. Point mutations at L1280 in Nav1.4 channel D3-S6 modulate binding affinity and stereoselectivity of bupivacaine enantiomers. Mol. Pharmacol. 63, 1398–1406 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 18.

    Lipkind, G. M. & Fozzard, H. A. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys. J. 66, 1–13 (1994).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 19.

    Kaneko, Y., Matsumoto, G. & Hanyu, Y. TTX resistivity of Na+ channel in newt retinal neuron. Biochem. Biophys. Res. Commun. 240, 651–656 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 20.

    Choudhary, G., Yotsu-Yamashita, M., Shang, L., Yasumoto, T. & Dudley, S. C. Jr Interactions of the C-11 hydroxyl of tetrodotoxin with the sodium channel outer vestibule. Biophys. J. 84, 287–294 (2003).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Chen, S.-F., Cölfen, H., Antonietti, M. & Yu, S.-H. Ethanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles. Chem. Comm. 49, 9564–9566 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 22.

    Bender, M. The use of light scattering for determining particle size and molecular weight and shape. J. Chem. Educ. 29, 15 (1952).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 24.

    Chen, R. & Chung, S.-H. Mechanism of tetrodotoxin block and resistance in sodium channels. Biochem. Biophys. Res. Commun. 446, 370–374 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 25.

    Lee, C. H. & Ruben, P. C. Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels 2, 407–412 (2008).

    PubMed 
    Article 

    Google Scholar 

  • 26.

    Tikhonov, D. B. & Zhorov, B. S. Predicting structural details of the sodium channel pore basing on animal toxin studies. Front. Pharmacol. 9, 880 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 27.

    Shen, H. et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362, eaau2596 (2018).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Ji, T. et al. Peptide assembly integration of fibroblast‐targeting and cell‐penetration features for enhanced antitumor drug delivery. Adv. Mater. 27, 1865–1873 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 29.

    Ji, T. et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano 11, 8668–8678 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 30.

    Ji, T. et al. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer‐associated fibroblast activation. Angew. Chem. 128, 1062–1067 (2016).

    Article 

    Google Scholar 

  • 31.

    Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).

  • 32.

    Trent, A., Marullo, R., Lin, B., Black, M. & Tirrell, M. Structural properties of soluble peptide amphiphile micelles. Soft Matter 7, 9572–9582 (2011).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Wang, H., Feng, Z. & Xu, B. Supramolecular assemblies of peptides or nucleopeptides for gene delivery. Theranostics 9, 3213–3222 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 34.

    Hendricks, M. P., Sato, K., Palmer, L. C. & Stupp, S. I. Supramolecular assembly of peptide amphiphiles. Acc. Chem. Res. 50, 2440–2448 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 35.

    Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide–amphiphile nanofibers. Science 294, 1684–1688 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 37.

    Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA 112, E3095–E3103 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 39.

    Ellett, L. J. & Johanssen, V. A. In Prions: Methods and Protocols (ed. Lawson, V. A.) 27–34 (Springer, 2017).

  • 40.

    Feldman, C. R., Brodie, E. D. & Pfrender, M. E. Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes. Proc. Natl. Acad. Sci. USA 109, 4556–4561 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 41.

    Kawatsu, K., Hamano, Y., Yoda, T., Terano, Y. & Shibata, T. Rapid and highly sensitive enzyme immunoassay for quantitative determination of tetrodotoxin. Jpn. J. Med. Sci. Biol. 50, 133–150 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 42.

    Moczydlowski, E., Mahar, J. & Ravindran, A. Multiple saxitoxin-binding sites in bullfrog muscle: tetrodotoxin-sensitive sodium channels and tetrodotoxin-insensitive sites of unknown function. Mol. Pharmacol. 33, 202–211 (1988).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Ciolino, J. B. et al. A drug-eluting contact lens. Invest. Ophthalmol. Vis. Sci. 50, 3346–3352 (2009).

    PubMed 
    Article 

    Google Scholar 

  • 44.

    Lomonte, B. et al. Comparative study of the cytolytic activity of myotoxic phospholipases A2 on mouse endothelial (tEnd) and skeletal muscle (C2C12) cells in vitro. Toxicon 37, 145–158 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 45.

    Slotkin, T. A., MacKillop, E. A., Ryde, I. T., Tate, C. A. & Seidler, F. J. Screening for developmental neurotoxicity using PC12 cells: comparisons of organophosphates with a carbamate, an organochlorine, and divalent nickel. Environ. Health Perspect. 115, 93–101 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Source link