McAlvin, J. B., Reznor, G., Shankarappa, S. A., Stefanescu, C. F. & Kohane, D. S. Local toxicity from local anesthetic polymeric microparticles. Anesth. Analg. 116, 794–803 (2013).
Google Scholar
Santamaria, C. M., Woodruff, A., Yang, R. & Kohane, D. S. Drug delivery systems for prolonged duration local anesthesia. Mater. Today 20, 22–31 (2017).
Google Scholar
Kohane, D. S. et al. A re-examination of tetrodotoxin for prolonged duration local anesthesia. Anesthesiology 89, 119–131 (1998).
Google Scholar
Lahaye, L. A. & Butterworth, J. F. IV Site-1 sodium channel blockers as local anesthetics: will neosaxitoxin supplant the need for continuous nerve blocks? Anesthesiology 123, 741–742 (2015).
Google Scholar
Adams, H., Blair, M. Jr & Takman, B. The local anesthetic activity of saxitoxin alone and with vasoconstrictor and local anesthetic agents. Arch. Int. Pharmacodyn. Ther. 224, 275–282 (1976).
Google Scholar
Padera, R., Bellas, E., Tse, J. Y., Hao, D. & Kohane, D. S. Local myotoxicity from sustained release of bupivacaine from microparticles. Anesthesiology 108, 921–928 (2008).
Google Scholar
Neal, J. M., Salinas, F. V. & Choi, D. S. Local anesthetic-induced myotoxicity after continuous adductor canal block. Reg. Anesth. Pain Med. 41, 723–727 (2016).
Google Scholar
Hofmann, P. et al. The myotoxic effect of bupivacaine and ropivacaine on myotubes in primary mouse cell culture and an immortalized cell line. Anesth. Analg. 117, 634–640 (2013).
Google Scholar
Kohane, D. S. et al. The local anesthetic properties and toxicity of saxitonin homologues for rat sciatic nerve block in vivo. Reg. Anesth. Pain Med. 25, 52–59 (2000).
Google Scholar
Kohane, D. S. et al. Prolonged duration local anesthesia from tetrodotoxin-enhanced local anesthetic microspheres. Pain 104, 415–421 (2003).
Google Scholar
Rwei, A. Y. et al. Repeatable and adjustable on-demand sciatic nerve block with phototriggerable liposomes. Proc. Natl Acad. Sci. USA 112, 15719–15724 (2015).
Google Scholar
Zhan, C. et al. Ultrasensitive phototriggered local anesthesia. Nano Lett. 17, 660–665 (2017).
Google Scholar
Thalhammer, J., Vladimirova, M., Bershadsky, B. & Strichartz, G. Neurologic evaluation of the rat during sciatic nerve block with lidocaine. Anesthesiology 82, 1013–1025 (1995).
Google Scholar
Zhan, C. et al. Phototriggered local anesthesia. Nano Lett. 16, 177–181 (2016).
Google Scholar
Rwei, A. Y., Zhan, C., Wang, B. & Kohane, D. S. Multiply repeatable and adjustable on-demand phototriggered local anesthesia. J. Control. Release 251, 68–74 (2017).
Google Scholar
Stoetzer, C. et al. Tetrodotoxin-sensitive α-subunits of voltage-gated sodium channels are relevant for inhibition of cardiac sodium currents by local anesthetics. Naunyn Schmiedebergs Arch. Pharmacol. 389, 625–636 (2016).
Google Scholar
Nau, C., Wang, S.-Y. & Wang, G. K. Point mutations at L1280 in Nav1.4 channel D3-S6 modulate binding affinity and stereoselectivity of bupivacaine enantiomers. Mol. Pharmacol. 63, 1398–1406 (2003).
Google Scholar
Lipkind, G. M. & Fozzard, H. A. A structural model of the tetrodotoxin and saxitoxin binding site of the Na+ channel. Biophys. J. 66, 1–13 (1994).
Google Scholar
Kaneko, Y., Matsumoto, G. & Hanyu, Y. TTX resistivity of Na+ channel in newt retinal neuron. Biochem. Biophys. Res. Commun. 240, 651–656 (1997).
Google Scholar
Choudhary, G., Yotsu-Yamashita, M., Shang, L., Yasumoto, T. & Dudley, S. C. Jr Interactions of the C-11 hydroxyl of tetrodotoxin with the sodium channel outer vestibule. Biophys. J. 84, 287–294 (2003).
Google Scholar
Chen, S.-F., Cölfen, H., Antonietti, M. & Yu, S.-H. Ethanol assisted synthesis of pure and stable amorphous calcium carbonate nanoparticles. Chem. Comm. 49, 9564–9566 (2013).
Google Scholar
Bender, M. The use of light scattering for determining particle size and molecular weight and shape. J. Chem. Educ. 29, 15 (1952).
Google Scholar
Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).
Google Scholar
Chen, R. & Chung, S.-H. Mechanism of tetrodotoxin block and resistance in sodium channels. Biochem. Biophys. Res. Commun. 446, 370–374 (2014).
Google Scholar
Lee, C. H. & Ruben, P. C. Interaction between voltage-gated sodium channels and the neurotoxin, tetrodotoxin. Channels 2, 407–412 (2008).
Google Scholar
Tikhonov, D. B. & Zhorov, B. S. Predicting structural details of the sodium channel pore basing on animal toxin studies. Front. Pharmacol. 9, 880 (2018).
Google Scholar
Shen, H. et al. Structural basis for the modulation of voltage-gated sodium channels by animal toxins. Science 362, eaau2596 (2018).
Google Scholar
Ji, T. et al. Peptide assembly integration of fibroblast‐targeting and cell‐penetration features for enhanced antitumor drug delivery. Adv. Mater. 27, 1865–1873 (2015).
Google Scholar
Ji, T. et al. Designing liposomes to suppress extracellular matrix expression to enhance drug penetration and pancreatic tumor therapy. ACS Nano 11, 8668–8678 (2017).
Google Scholar
Ji, T. et al. Transformable peptide nanocarriers for expeditious drug release and effective cancer therapy via cancer‐associated fibroblast activation. Angew. Chem. 128, 1062–1067 (2016).
Google Scholar
Israelachvili, J. N. Intermolecular and Surface Forces (Academic Press, 2011).
Trent, A., Marullo, R., Lin, B., Black, M. & Tirrell, M. Structural properties of soluble peptide amphiphile micelles. Soft Matter 7, 9572–9582 (2011).
Google Scholar
Wang, H., Feng, Z. & Xu, B. Supramolecular assemblies of peptides or nucleopeptides for gene delivery. Theranostics 9, 3213–3222 (2019).
Google Scholar
Hendricks, M. P., Sato, K., Palmer, L. C. & Stupp, S. I. Supramolecular assembly of peptide amphiphiles. Acc. Chem. Res. 50, 2440–2448 (2017).
Google Scholar
Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide–amphiphile nanofibers. Science 294, 1684–1688 (2001).
Google Scholar
Ortony, J. H. et al. Internal dynamics of a supramolecular nanofibre. Nat. Mater. 13, 812–816 (2014).
Google Scholar
Micsonai, A. et al. Accurate secondary structure prediction and fold recognition for circular dichroism spectroscopy. Proc. Natl Acad. Sci. USA 112, E3095–E3103 (2015).
Google Scholar
Greenfield, N. J. Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 1, 2876–2890 (2006).
Google Scholar
Ellett, L. J. & Johanssen, V. A. In Prions: Methods and Protocols (ed. Lawson, V. A.) 27–34 (Springer, 2017).
Feldman, C. R., Brodie, E. D. & Pfrender, M. E. Constraint shapes convergence in tetrodotoxin-resistant sodium channels of snakes. Proc. Natl. Acad. Sci. USA 109, 4556–4561 (2012).
Google Scholar
Kawatsu, K., Hamano, Y., Yoda, T., Terano, Y. & Shibata, T. Rapid and highly sensitive enzyme immunoassay for quantitative determination of tetrodotoxin. Jpn. J. Med. Sci. Biol. 50, 133–150 (1997).
Google Scholar
Moczydlowski, E., Mahar, J. & Ravindran, A. Multiple saxitoxin-binding sites in bullfrog muscle: tetrodotoxin-sensitive sodium channels and tetrodotoxin-insensitive sites of unknown function. Mol. Pharmacol. 33, 202–211 (1988).
Google Scholar
Ciolino, J. B. et al. A drug-eluting contact lens. Invest. Ophthalmol. Vis. Sci. 50, 3346–3352 (2009).
Google Scholar
Lomonte, B. et al. Comparative study of the cytolytic activity of myotoxic phospholipases A2 on mouse endothelial (tEnd) and skeletal muscle (C2C12) cells in vitro. Toxicon 37, 145–158 (1999).
Google Scholar
Slotkin, T. A., MacKillop, E. A., Ryde, I. T., Tate, C. A. & Seidler, F. J. Screening for developmental neurotoxicity using PC12 cells: comparisons of organophosphates with a carbamate, an organochlorine, and divalent nickel. Environ. Health Perspect. 115, 93–101 (2007).
Google Scholar

