Foxman, B. The epidemiology of urinary tract infection. Nat. Rev. Urol. 7, 653–660 (2010).
Google Scholar
Flores-Mireles, A. L., Walker, J. N., Caparon, M. & Hultgren, S. J. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13, 269–284 (2015).
Google Scholar
Foxman, B. Urinary tract infection syndromes. Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North Am. 28, 1–13 (2014).
Google Scholar
Ronald, A. The etiology of urinary tract infection: TRADITIONAL and emerging pathogens. Am. J. Med. 113, 14–19 (2002).
Google Scholar
Mclellan, L. K. & Hunstad, D. A. Urinary tract infection: pathogenesis and outlook. Trends Mol. Med. xx, 1–12 (2016).
Ronald, A. The etiology of urinary tract infection: traditional and emerging pathogens. Dis. Mon. 49, 71–82 (2003).
Google Scholar
Johnson, J. R. Virulence factors in Escherichia coli urinary tract infection. Clin. Microbiol. Rev. 4, 80–128 (1991).
Google Scholar
Subashchandrabose, S. & Mobley, H. L. T. Virulence and fitness determinants of uropathogenic Escherichia coli. Urin. Tract Infect. 3, 235–261 (2016).
Google Scholar
Terlizzi, M. E., Gribaudo, G. & Maffei, M. E. UroPathogenic Escherichia coli (UPEC) infections: virulence factors, bladder responses, antibiotic, and non-antibiotic antimicrobial strategies. Front. Microbiol. 8, 1566 (2017).
Google Scholar
Chahales, P. & Thanassi, D. G. Structure, function, and assembly of adhesive organelles by uropathogenic bacteria. Microbiol. Spectrum 3, 3–5 (2015).
Google Scholar
Hultgren, S. J. et al. The PapG adhesin of uropathogenic Escherichia coli contains separate regions for receptor binding and for the incorporation into the pilus. Proc. Natl. Acad. Sci. U.S.A. 86, 4357–4361 (1989).
Google Scholar
Lund, B., Lindberg, F., Marklund, B. I. & Normark, S. The PapG protein is the alpha-D-galactopyranosyl-(1–4)-beta-D-galactopyranose-binding adhesin of uropathogenic Escherichia coli. Proc. Natl. Acad. Sci. U.S.A. 84, 5898–5902 (1987).
Google Scholar
Lane, M. C. & Mobley, H. L. T. Role of P-fimbrial-mediated adherence in pyelonephritis and persistence of uropathogenic Escherichia coli (UPEC) in the mammalian kidney. Kidney Int. 72, 19–25 (2007).
Google Scholar
Qin, X. et al. Comparison of adhesin genes and antimicrobial susceptibilities between uropathogenic and intestinal commensal Escherichia coli strains. PLoS ONE 8, 1–7 (2013).
Källenius, G. et al. Occurrence of p-fimbriated Escherichia coli in urinary tract infections. Lancet 318, 1369–1372 (1981).
Google Scholar
Wullt, B. et al. P fimbriae enhance the early establishment of Escherichia coli in the human urinary tract. Mol. Microbiol. 38, 456–464 (2000).
Google Scholar
Tseng, C. C. et al. PapG II adhesin in the establishment and persistence of Escherichia coli infection in mouse kidneys. Kidney Int. 71, 764–770 (2007).
Google Scholar
Norinder, B. S. et al. Cellulose and PapG are important for Escherichia coli causing recurrent urinary tract infection in women. Infection 39, 571–574 (2011).
Google Scholar
ANTIMICROBIAL RESISTANCE Global Report on Surveillance.
Klemm, E. J., Wong, V. K. & Dougan, G. Emergence of dominant multidrug-resistant bacterial clades: lessons from history and whole-genome sequencing. Proc. Natl. Acad. Sci. U.S.A. 115, 12872–12877 (2018).
Google Scholar
Klein, R. D. & Hultgren, S. J. Urinary tract infections: microbial pathogenesis, host–pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 18, 211–226 (2020).
Google Scholar
Loubet, P. et al. Alternative therapeutic options to antibiotics for the treatment of urinary tract infections. Front. Microbiol. 11, 1–18 (2020).
Google Scholar
Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).
Google Scholar
Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).
Google Scholar
Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. U.S.A. 109, E2579–E2586 (2012).
Google Scholar
Bikard, D. et al. Development of sequence-specific antimicrobials based on programmable CRISPR-Cas nucleases. Nat. Biotechnol. 32, 1146–1150 (2014).
Google Scholar
Yosef, I., Manor, M., Kiro, R. & Qimron, U. Temperate and lytic bacteriophages programmed to sensitize and kill antibiotic-resistant bacteria. Proc. Natl. Acad. Sci. U.S.A. 112, 7267–7272 (2015).
Google Scholar
De La Fuente-Núñez, C. & Lu, T. K. CRISPR-Cas9 technology: applications in genome engineering, development of sequence-specific antimicrobials, and future prospects. Integr. Biol. (United Kingdom) 9, 109–122 (2017).
Google Scholar
Beisel, C. L., Gomaa, A. A. & Barrangou, R. A CRISPR design for next-generation antimicrobials. Genome Biol. 15, 516 (2014).
Google Scholar
Lino, C. A., Harper, J. C., Carney, J. P. & Timlin, J. A. Delivering crispr: a review of the challenges and approaches. Drug Deliv. 25, 1234–1257 (2018).
Google Scholar
Kang, Y. K. et al. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic. Bioconjugate Chem. https://doi.org/10.1021/acs.bioconjchem.6b00676 (2017).
Google Scholar
Lee, K. et al. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1, 889–901 (2017).
Google Scholar
Zhu, S. et al. The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective. Nano Res. 8, 355–381 (2015).
Google Scholar
Wu, Y. et al. Multi-functionalized carbon dots as theranostic nanoagent for gene delivery in lung cancer therapy. Nat. Publ. Gr. https://doi.org/10.1038/srep21170 (2016).
Google Scholar
Das, P. et al. Green approach to photoluminescent carbon dots for imaging of gram-negative bacteria Escherichia coli. Nanotechnology 28, 195501 (2017).
Google Scholar
Matea, C. T. et al. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomed. 12, 5421–5431 (2017).
Google Scholar
Legros, N. et al. PapG subtype-specific binding characteristics of Escherichia coli towards globo-series glycosphingolipids of human kidney and bladder uroepithelial cells. Glycobiology 29, 789–802 (2019).
Google Scholar
Naves, P. et al. Correlation between virulence factors and in vitro biofilm formation by Escherichia coli strains. Microb. Pathog. 45, 86–91 (2008).
Google Scholar
González, M. J., Robino, L., Iribarnegaray, V., Zunino, P. & Scavone, P. Effect of different antibiotics on biofilm produced by uropathogenic Escherichia coli isolated from children with urinary tract infection. Pathog. Dis. 75, 1–9 (2017).
Google Scholar
Berne, C., Ducret, A., Hardy, G. G. & Brun, Y. V. Adhesins Involved in Attachment to Abiotic Surfaces by Gram-Negative Bacteria. Microbiol. Spectr. 3 1–27 (2015).
Stamm, W. E. & Norrby, S. R. Urinary tract infections: disease panorama and challenges. J. Infect. Dis. 183, S1–S4 (2001).
Google Scholar
Öztürk, R. & Murt, A. Epidemiology of urological infections: a global burden. World J. Urol. https://doi.org/10.1007/s00345-019-03071-4 (2020).
Google Scholar
Chu, C. M. & Lowder, J. L. Expert reviews diagnosis and treatment of urinary tract infections across age groups. Am. J. Obstet. Gynecol. 219, 40–51 (2018).
Google Scholar
Foxman, B., Barlow, R., D’Arcy, H., Gillespie, B. & Sobel, J. D. Urinary tract infection: self-reported incidence and associated costs. Ann. Epidemiol. 10(8), 509–515 (2000).
Google Scholar
Sauer, F. G., Remaut, H., Hultgren, S. J. & Waksman, G. Fiber assembly by the chaperone-usher pathway. Biochim. Biophys. Acta 1694, 259–267 (2004).
Google Scholar
De Ree, J. M. & Van den Bosch, J. F. Serological response to the P fimbriae of uropathogenic Escherichia coli in pyelonephritis. Infect. Immun. 55, 2204–2207 (1987).
Google Scholar
O’Hanley, P., Lark, D., Falkow, S. & Schoolnik, G. Molecular basis of Escherichia coli colonization of the upper urinary tract in BALB/c mice. Gal-Gal pili immunization prevents Escherichia coli pyelonephritis in the BALB/c mouse model of human pyelonephritis. J. Clin. Invest. 75, 347–360 (1985).
Google Scholar
Roberts, J. A. et al. Antibody responses and protection from pyelonephritis following vaccination with purified Escherichia coli PapDG protein. J. Urol. 171, 1682–1685 (2004).
Google Scholar
O’Brien, V. P., Hannan, T. J., Nielsen, H. V. & Hultgren, S. J. Drug and vaccine development for the treatment and prevention of urinary tract infections. Microbiol. Spectr. 4, 1–62 (2016).
Larson, M. H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).
Google Scholar
Jiang, W., Bikard, D., Cox, D., Zhang, F. & Marraffini, L. A. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat. Biotechnol. 31, 233–239 (2013).
Google Scholar
Shabbir, M. A. B. et al. CRISPR-cas system: biological function in microbes and its use to treat antimicrobial resistant pathogens. Ann. Clin. Microbiol. Antimicrob. 18, 1–9 (2019).
Google Scholar
Chen, F., Alphonse, M. & Liu, Q. Strategies for nonviral nanoparticle-based delivery of CRISPR/Cas9 therapeutics. WIREs Nanomed. Nanobiotechnol. 12, e1609 (2020).
Zuberi, A., Ahmad, N. & Khan, A. U. CRISPRi induced suppression of fimbriae gene (fimH) of a uropathogenic Escherichia coli: An approach to inhibit microbial biofilms. Front. Immunol. 8, 1552 (2017).
Google Scholar
Liu, C., Zhang, L., Liu, H. & Cheng, K. Delivery strategies of the CRISPR-Cas9 gene-editing system for therapeutic applications HHS public access. J Control Release 266, 17–26 (2017).
Google Scholar
Kyung Kang, Y. et al. Nonviral genome editing based on a polymer-derivatized CRISPR nanocomplex for targeting bacterial pathogens and antibiotic resistance. . Bioconjucate Chem. https://doi.org/10.1021/acs.bioconjchem.6b00676 (2017).
Google Scholar
Roberts, J. A., Hardaway, K., Kaack, B., Fussell, E. N. & Baskin, G. Prevention of pyelonephritis by immunization with P-fimbriae. J. Urol. 131, 602–607 (1984).
Google Scholar
Bergsten, G. et al. PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J. Infect. Dis. 189, 1734–1742 (2004).
Google Scholar
Bergsten, G., Wullt, B. & Svanborg, C. Escherichia coli, fimbriae, bacterial persistence and host response induction in the human urinary tract. Int. J. Med. Microbiol. 295, 487–502 (2005).
Google Scholar
Bien, J., Sokolova, O. & Bozko, P. Role of uropathogenic Escherichia coli virulence factors in development of urinary tract infection and kidney damage. Int. J. Nephrology 2012, 1–15 (2012).
Sanchez, C. J. et al. Biofilm formation by clinical isolates and the implications in chronic infections. BMC Infect. Dis. 13, 1–12 (2013).
Google Scholar
Sharma, D., Misba, L. & Khan, A. U. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob. Resist. Infect. Control 8, 1–10 (2019).
Google Scholar
Römling, U. & Balsalobre, C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J. Intern. Med. 272, 541–561 (2012).
Google Scholar
Delcaru, C. et al. Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens 5, 65 (2016).
Google Scholar
Adamus-Białek, W., Kubiak, A. & Czerwonka, G. Analysis of uropathogenic Escherichia coli biofilm formation under different growth conditions. Acta Biochim. Pol. 62, 765–771 (2015).
Google Scholar
Verma, V. et al. Involvement of NLRP3 and NLRC4 inflammasome in uropathogenic E. coli mediated urinary tract infections. Front. Microbiol. 10, 1–15 (2019).
Google Scholar
Thakur, S. D., Obradovic, M., Dillon, J. A. R., Ng, S. H. & Wilson, H. L. Development of flow cytometry based adherence assay for Neisseria gonorrhoeae using 5′-carboxyfluorosceinsuccidyl ester. BMC Microbiol. 19, 1–8 (2019).
Google Scholar
MubarakAli, D., Thajuddin, N., Jeganathan, K. & Gunasekaran, M. Plant extract mediated synthesis of silver and gold nanoparticles and its antibacterial activity against clinically isolated pathogens. Colloids Surf. B Biointerfaces 85, 360–365 (2011).
Google Scholar
Black, F., Bulmus, V. & Woodward, M. Hoffman group–standard procedure for hemolysis assay. JJ Hwang 5, 13–18 (2003).
Montague, T. G., Cruz, J. M., Gagnon, J. A., Church, G. M. & Valen, E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 42, W401–W407 (2014).
Google Scholar
Girón, J. A., Torres, A. G., Freer, E. & Kaper, J. B. The flagella of enteropathogenic Escherichia coli mediate adherence to epithelial cells. Mol. Microbiol. 44, 361–379 (2002).
Google Scholar
Brown, M. R. et al. A flow cytometry method for bacterial quantification and biomass estimates in activated sludge. J. Microbiol. Methods 160, 73–83 (2019).
Google Scholar
Grootaert, C. et al. Adherence and viability of intestinal bacteria to differentiated Caco-2 cells quantified by flow cytometry. J. Microbiol. Methods 86, 33–41 (2011).
Google Scholar
Pedraza, G. R. Manual de software flowing para microaula de citometría de flujo. (2017).
Schiebel, J. et al. Genotypic and phenotypic characteristics associated with biofilm formation by human clinical Escherichia coli isolates of different pathotypes. Appl. Environ. Microbiol. 83, e01660-17 (2017).
Google Scholar
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis 2012 97. Nat. Methods 9, 671–675 (2012).
Google Scholar
Engelsöy, U., Rangel, I. & Demirel, I. Impact of proinflammatory cytokines on the virulence of uropathogenic Escherichia coli. Front. Microbiol. 10, 1051 (2019).
Google Scholar

