Work, T. H., A new virus disease in India. Summary of preliminary report on investigations of the Virus Research Center on an epidemic disease affecting forest villagers and wild monkeys of Shimoga Districk, Mysore. Indian J. Med. Sci. 11, 341–342 (1957).
Google Scholar
Sreenivasanh, M. A., Bhat, R. & Rajagopalan, P. K. The epizootics of kyasanur forest disease in wild monkeys during 1964 to 1973. Trans. R. Soc. Trop. Med. Hyg. 80, 810–814 (1986).
Google Scholar
Sreejith, K. A. B. K. N. K. Kyasanur forest disease virus breaking the endemic barrier: An investigation into ecological effects on disease emergence and future outlook. 1–8. https://doi.org/10.1111/zph.12349 (2017).
Yadav, P. D. et al. Phylogeography of Kyasanur Forest Disease virus in India (1957–2017) reveals evolution and spread in the Western Ghats region. Sci. Rep. 1–12. https://doi.org/10.1038/s41598-020-58242-w (2020).
Naren Babu, N. et al. Spatial distribution of Haemaphysalis species ticks and human Kyasanur Forest Disease cases along the Western Ghats of India, 2017–2018. Exp. Appl. Acarol. 77, 435–447 (2019).
Google Scholar
Dodd, K. A. et al. Ancient ancestry of KFDV and AHFV revealed by complete genome analyses of viruses isolated from ticks and Mammalian hosts. PLoS Negl. Trop. Dis. 5, 1–7 (2011).
Google Scholar
Gritsun, D. J., Jones, I. M., Gould, E. A. & Gritsun, T. S. Molecular archaeology of Flaviviridae untranslated regions: Duplicated RNA structures in the replication enhancer of flaviviruses and pestiviruses emerged via convergent evolution. PLoS One 9, 1–11 (2014).
Google Scholar
Chakraborty, S., Andrade, F. C. D., Ghosh, S., Uelmen, J. & Ruiz, M. O. Historical expansion of Kyasanur Forest Disease in India from 1957 to 2017: A retrospective analysis. GeoHealth 3, 44–55 (2019).
Google Scholar
Gurav, Y. K. et al. Kyasanur Forest Disease prevalence in Western Ghats proven and confirmed by recent outbreak in Maharashtra, India, 2016. Vector-Borne Zoonotic Dis. 18, 164–172 (2018).
Google Scholar
Mehendale, S. et al. Kyasanur Forest Disease outbreak and vaccination strategy, Shimoga District, India 2013–2014. Emerg. Infect. Dis. 21, 2013–2014 (2019).
Kasabi, G. S., Murhekar, M. V., Sandhya, V. K. & Raghunandan, R. Coverage and effectiveness of Kyasanur Forest Disease (KFD) vaccine in Karnataka, South India, 2005–10. PLoS Negl. Trop. Dis. 7, 13–16 (2013).
Google Scholar
Shil, P., Yadav, P. D., Patil, A. A., Balasubramanian, R. & Mourya, D. T. Bioinformatics characterization of envelope glycoprotein from Kyasanur Forest disease virus. Indian J. Med. Res. https://doi.org/10.4103/ijmr.IJMR (2018).
Google Scholar
de Sousa, C. B. P., da Soares, I. S. & Rosa, D. S. Editorial: Epitope discovery and synthetic vaccine design. Front. Immunol. 9, 9–11 (2018).
Google Scholar
Ali, M., Pandey, R. K., Khatoon, N., Narula, A. & Mishra, A. Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Sci. Rep. https://doi.org/10.1038/s41598-017-09199-w (2017).
Google Scholar
Can, H., Köseoğlu, A. E., Alak, S. E., Güvendi, M. & Döşkaya, M. In silico discovery of antigenic proteins and epitopes of SARS-CoV-2 for the development of a vaccine or a diagnostic approach for COVID-19. Sci. Rep. https://doi.org/10.1038/s41598-020-79645-9 (2020).
Google Scholar
Kar, T. et al. A candidate multi-epitope vaccine against SARS-CoV-2. Sci. Rep. https://doi.org/10.1038/s41598-020-67749-1 (2020).
Google Scholar
Behmard, E., Soleymani, B., Najafi, A. & Barzegari, E. Immunoinformatic design of a COVID-19 subunit vaccine using entire structural immunogenic epitopes of SARS-CoV-2. Sci. Rep. https://doi.org/10.1038/s41598-020-77547-4 (2020).
Google Scholar
Bibi, S., Ullah, I., Zhu, B., Adnan, M. & Liaqat, R. In silico analysis of epitope-based vaccine candidate against tuberculosis using reverse vaccinology. Sci. Rep. https://doi.org/10.1038/s41598-020-80899-6 (2021).
Google Scholar
Klimka, A. et al. Epitope-specific immunity against Staphylococcus aureus coproporphyrinogen III oxidase. NPJ Vaccines https://doi.org/10.1038/s41541-020-00268-2 (2021).
Google Scholar
Palanisamy, N., Akaberi, D., Lennerstrand, J. & Lundkvist, Å. Comparative genome analysis of Alkhumra hemorrhagic fever virus with Kyasanur forest disease and tick-borne encephalitis viruses by the in silico approach. Pathog. Glob. Health 112, 1–17 (2018).
Google Scholar
Devadiga, S., McElroy, A. K., Prabhu, S. G. & Arunkumar, G. Dynamics of human B and T cell adaptive immune responses to Kyasanur forest disease virus infection. Sci. Rep. 10, 1–9 (2020).
Google Scholar
Liu, G. et al. Immunogenicity and efficacy of flagellin-envelope fusion dengue. Clin. Vaccine Immunol. 22, 516–525 (2015).
Google Scholar
Bauer, A. et al. Preferential targeting of conserved gag regions after vaccination with a heterologous DNA prime-modified vaccinia virus Ankara boost HIV-1 vaccine regimen. J. Virol. 91, e00730-17 (2017).
Google Scholar
Rajaiah, P. Kyasanur Forest Disease in India: Innovative options for intervention. Hum. Vaccines Immunother. 15, 2243–2248 (2019).
Google Scholar
Sette, A. et al. Definition of epitopes and antigens recognized by vaccinia specific immune responses: Their conservation in variola virus sequences, and use as a model system to study complex pathogens. Vaccine 27(Suppl 6), G21–G26 (2009).
Google Scholar
Mackay, L. K. et al. T Cell Detection of a B-Cell Tropic Virus Infection: Newly-Synthesised Versus Mature Viral Proteins as Antigen Sources for CD4 and CD8 Epitope Display. 5, (2009).
De Gregorio, E., Caproni, E. & Ulmer, J. B. Vaccine adjuvants: Mode of action. Front. Immunol. 4, 1–6 (2013).
Google Scholar
Tani, K. et al. Defensins act as potent adjuvant taht promote cellular and humoral immune response in mice to a lymphhoma idiotype and carrier antigents. Int. Immunol. 12, 691–700 (2000).
Google Scholar
Barton, G. M. Viral recognition by Toll-like receptors. Semin Immunol. 19, 33–40 (2007).
Google Scholar
Zheng, M. et al. TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat. Immunol. https://doi.org/10.1038/s41590-021-00937-x (2021).
Google Scholar
Xagorari, A. & Chlichlia, K. Toll-like receptors and viruses: Induction of innate antiviral immune responses. Open Microbiol. J. 2, 49–59 (2008).
Google Scholar
Pauling, L., Corey, R. B. & Branson, H. R. The structure of proteins: two hydrogen-bonded helical configurations of the polypeptide chain. Proc. Natl. Acad. Sci. 37, 205–211 (1951).
Google Scholar
Pauling, L. & Corey, R. B. The pleated sheet, a new layer configuration of polypeptide chains. Proc. Natl. Acad. Sci. U. S. A. 37, 251–256 (1951).
Google Scholar
Carsetti, R. The role of memory B cells in immunity after vaccination. Paediatr. Child Health 19, S160–S162 (2009).
Google Scholar
Palm, A. E. & Henry, C. Remembrance of things past: Long-term B cell memory after infection and vaccination. Front. Immunol. 10, 1–13 (2019).
Google Scholar
Cox, R. J. & Brokstad, K. A. Not just antibodies: B cells and T cells mediate immunity to COVID-19. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-020-00436-4 (2020).
Google Scholar
Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in Escherichia coli: Advances and challenges. Front. Microbiol. 5, 1–17 (2014).
Kim, Y., Sidney, J., Pinilla, C., Sette, A. & Peters, B. Derivation of an amino acid similarity matrix for peptide: MHC binding and its application as a Bayesian prior. BMC Bioinform. 10, 1–11 (2009).
Nielsen, M. et al. Reliable prediction of T-cell epitopes using neural networks with novel sequence representations. Protein Sci. 12, 1007–1017 (2003).
Google Scholar
Lundegaard, C., Lund, O. & Nielsen, M. Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers. Bioinformatics 24, 1397–1398 (2008).
Google Scholar
Peters, B. & Sette, A. Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinform. 6, 1–9 (2005).
Google Scholar
Sidney, J. et al. Quantitative peptide binding motifs for 19 human and mouse MHC class I molecules derived using positional scanning combinatorial peptide libraries. Immunome Res. 4, 1–14 (2008).
Google Scholar
Tenzer, S. et al. Modeling the MHC class I pathway by combining predictions of proteasomal cleavage, TAP transport and MHC class I binding. Cell. Mol. Life Sci. 62, 1025–1037 (2005).
Google Scholar
Peters, B., Bulik, S., Tampe, R., van Endert, P. M. & Holzhütter, H.-G. Identifying MHC class I epitopes by predicting the TAP transport efficiency of epitope precursors. J. Immunol. 171, 1741–1749 (2003).
Google Scholar
Hakenberg, J. et al. MAPPP: MHC class I antigenic peptide processing prediction. Appl. Bioinform. 2, 155–158 (2003).
Google Scholar
Lin, H. H., Ray, S., Tongchusak, S., Reinherz, E. L. & Brusic, V. Evaluation of MHC class I peptide binding prediction servers: Applications for vaccine research. BMC Immunol. 9, 1–13 (2008).
Google Scholar
Wang, P. et al. Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinform. 11, 568 (2010).
Google Scholar
Wang, P. et al. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput. Biol. 4, e1000048 (2008).
Google Scholar
Lata, S., Bhasin, M. & Raghava, G. P. S. Application of machine learning techniques in predicting MHC binders. In Immunoinformatics: Predicting Immunogenicity In Silico (ed. Flower, D. R.) 201–215 (Humana Press, 2007). https://doi.org/10.1007/978-1-60327-118-9_14.
Google Scholar
Saha, S. & Raghava, G. P. S. Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins 65, 40–48 (2006).
Google Scholar
Chen, J., Liu, H., Yang, J. & Chou, K. C. Prediction of linear B-cell epitopes using amino acid pair antigenicity scale. Amino Acids 33, 423–428 (2007).
Google Scholar
El-Manzalawy, Y., Dobbs, D. & Honavar, V. Predicting linear B-cell epitopes using string kernels. J. Mol. Recognit. 21, 243–255 (2008).
Google Scholar
Yao, B., Zhang, L., Liang, S. & Zhang, C. SVMTriP: A method to predict antigenic epitopes using support vector machine to integrate tri-peptide similarity and propensity. PLoS One 7, 5–9 (2012).
Nezafat, N., Ghasemi, Y., Javadi, G., Khoshnoud, M. J. & Omidinia, E. A novel multi-epitope peptide vaccine against cancer: An in silico approach. J. Theor. Biol. 349, 121–134 (2014).
Google Scholar
Saha, S. & Raghava, G. P. S. AlgPred: Prediction of allergenic proteins and mapping of IgE epitopes. Nucl. Acids Res. 34, 202–209 (2006).
Google Scholar
Doytchinova, I. A. & Flower, D. R. VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinform. 8, 1–7 (2007).
Google Scholar
Gasteiger, E. et al. Protein identification and analysis tools in the ExPASy server (ed. Walker, J. M.) 571–607 (Humana Press Inc, 2005).
Smialowski, P., Doose, G., Torkler, P., Kaufmann, S. & Frishman, D. PROSO II—A new method for protein solubility prediction. FEBS J. 279, 2192–2200 (2012).
Google Scholar
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. E. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858 (2015).
Google Scholar
Xu, D. & Zhang, Y. Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 101, 2525–2534 (2011).
Google Scholar
Shin, W.-H., Lee, G. R., Heo, L., Lee, H. & Seok, C. Prediction of protein structure and interaction by GALAXY protein modeling programs. Bio Des. 2, 1–11 (2014).
Ko, J., Park, H., Heo, L. & Seok, C. GalaxyWEB server for protein structure prediction and refinement. Nucl. Acids Res. 40, 294–297 (2012).
Google Scholar
Carugo, O. & Djinović-Carugo, K. A proteomic Ramachandran plot (PRplot). Amino Acids 44, 781–790 (2013).
Google Scholar
Wiederstein, M. & Sippl, M. J. ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucl. Acids Res. 35, 407–410 (2007).
Google Scholar
Sippl, M. J. Recognition of errors in three-dimensional structures of proteins. Proteins Struct. Funct. Bioinform. 17, 355–362 (1993).
Google Scholar
Vajda, S. et al. New additions to the ClusPro server motivated by CAPRI. Proteins Struct. Funct. Bioinform. 85, 435–444 (2017).
Google Scholar
Schneidman-duhovny, D., Inbar, Y., Nussinov, R. & Wolfson, H. J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucl. Acids Res. 33, 363–367 (2005).
Google Scholar
Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R. & Wolfson, H. J. FireDock: A web server for fast interaction refinement in molecular docking. Nucl. Acids Res. 36, W229–W232 (2008).
Google Scholar
Andrusier, N., Nussinov, R. & Wolfson, H. J. FireDock: Fast interaction refinement in molecular docking. Proteins 69, 139–159 (2007).
Google Scholar
Wallace, A. C., Laskowski, R. A. & Thornton, J. M. LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions. Protein Eng. 8, 127–134 (1995).
Google Scholar
Lopéz-blanco, J. R., Garzón, J. I. & Chacón, P. iMod: Multipurpose normal mode analysis in internal coordinates. Bioinformatics 27, 2843–2850 (2011).
Google Scholar
Aliaga, I., Quintana-ort, E. S. & Chac, P. iMODS: Internal coordinates normal mode analysis server. Nucl. Acids Res. 42, 271–276 (2014).
Google Scholar
Kovacs, J. A., Chaco, P. & Abagyan, R. Predictions of protein flexibility: First-order measures. Proteins Struct. Funct. Bioinform. 668, 661–668 (2004).
Google Scholar
Grote, A. et al. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucl. Acids Res. 33, 526–531 (2005).
Google Scholar
Rapin, N., Lund, O., Bernaschi, M. & Castiglione, F. Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PLoS One 5, e9862 (2010).
Google Scholar

