Preloader

Investigation of major amino acid residues of anti-norfloxacin monoclonal antibodies responsible for binding with fluoroquinolones

  • 1.

    Kamat, V. & Rafique, A. Extending the throughput of Biacore 4000 biosensor to accelerate kinetic analysis of antibody-antigen interaction. Anal. Biochem. 530, 75–86 (2017).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Yu, H.-W., Halonen, M. J. & Pepper, I. L. Chapter 12—Immunological methods. In Environmental Microbiology 2nd edn (eds Pepper, I. L. et al.) 245–269 (Academic Press, 2015).

    Chapter 

    Google Scholar 

  • 3.

    Ahmad, Z. A., Yeap, S. K., Ali, A. M., Ho, W. Y., Alitheen, N. B. & Hamid, M. scFv antibody: principles and clinical application.Clin. Dev. Immunol. 2012, 980250 (2012).

    Article 

    Google Scholar 

  • 4.

    Flaherty, D. K. Chapter 10—Antibody diversity. In Immunology for Pharmacy (ed. Flaherty, D. K.) 79–86 (Mosby, 2012).

    Google Scholar 

  • 5.

    Pham, P. V. Chapter 19—Medical biotechnology: Techniques and applications. In Omics Technologies and Bio-engineering (eds Barh, D. & Azevedo, V.) 449–469 (Academic Press, 2018).

    Chapter 

    Google Scholar 

  • 6.

    Berg, J. M., Tymoczko, J. L. & Stryer, L. Biochemistry 5th edn. (W H Freeman, 2002).

    Google Scholar 

  • 7.

    Abrigach, F. et al. In vitro screening, homology modeling and molecular docking studies of some pyrazole and imidazole derivatives. Biomed. Pharmacother. 103, 653–661 (2018).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Morris, G. M. et al. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem. 30(16), 2785–2791 (2009).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Karthick, T., Balachandran, V. & Perumal, S. Spectroscopic investigations, molecular interactions, and molecular docking studies on the potential inhibitor “thiophene-2-carboxylicacid”. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 141, 104–112 (2015).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 10.

    Elbegdorj, O., Westkaemper, R. B. & Zhang, Y. A homology modeling study toward the understanding of three-dimensional structure and putative pharmacological profile of the G-protein coupled receptor GPR55. J. Mol. Graph. Model. 39, 50–60 (2013).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Uciechowska-Kaczmarzyk, U., Chauvot de Beauchene, I. & Samsonov, S. A. Docking software performance in protein-glycosaminoglycan systems. J. Mol. Graph. Model. 90, 42–50 (2019).

    CAS 
    Article 

    Google Scholar 

  • 12.

    Thomsen, R. & Christensen, M. H. MolDock: a new technique for high-accuracy molecular docking. J. Med. Chem. 49(11), 3315–3321 (2006).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Lippow, S. M., Wittrup, K. D. & Tidor, B. Computational design of antibody-affinity improvement beyond in vivo maturation. Nat. Biotechnol. 25(10), 1171–1176. https://doi.org/10.1038/nbt1336 (2007)

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Poosarla, V. G., Li, T., Goh, B. C., Schulten, K., Wood, T. K. & Maranas, C. D. Computational de novo design of antibodies binding to a peptide with high affinity. Biotechnol. Bioeng. 114(6), 1331–1342. https://doi.org/10.1002/bit.26244 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 15.

    Keskin, O. Binding induced conformational changes of proteins correlate with their intrinsic fluctuations: a case study of antibodies. BMC Struct. Biol. 7(1), 31. https://doi.org/10.1186/1472-6807-7-31 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Zhang S., Krumberger, M., Morris, M. A., Parrocha, C. M. T., Kreutzer, A. G. & Nowick, J. S. Structure-based drug design of an inhibitor of the SARS-CoV-2 (COVID-19) main protease using free software: A tutorial for students and scientists. Eur. J. Med. Chem.. 218, 113390. https://doi.org/10.1016/j.ejmech.2021.113390 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Hooper, D. C. & Jacoby, G. A. Topoisomerase inhibitors: Fluoroquinolone mechanisms of action and resistance. Cold Spring Harb. Perspect. Med. 6(9), a025320 (2016).

    Article 

    Google Scholar 

  • 18.

    Manyi-Loh, C., Mamphweli, S., Meyer, E. & Okoh, A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 23(4), 795 (2018).

    Article 

    Google Scholar 

  • 19.

    San Martin, B., Cornejo, J., Iraguen, D., Hidalgo, H. & Anadon, A. Depletion study of enrofloxacin and its metabolite ciprofloxacin in edible tissues and feathers of white leghorn hens by liquid chromatography coupled with tandem mass spectrometry. J. Food Prot. 70(8), 1952–1957 (2007).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Samarajeewa, U., Wei, C. I., Huang, T. S. & Marshall, M. R. Application of immunoassay in the food industry. Crit. Rev. Food Sci. Nutr. 29(6), 403–434 (1991).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Bahadır, E. B. & Sezgintürk, M. K. Applications of commercial biosensors in clinical, food, environmental, and biothreat/biowarfare analyses. Anal. Biochem. 478, 107–120 (2015).

    Article 

    Google Scholar 

  • 22.

    Trott, O. & Olson, A. J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31(2), 455–461 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Waterhouse, A. et al. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46(W1), W296-w303 (2018).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Oduselu, G. O., Ajani, O. O., Ajamma, Y. U., Brors, B. & Adebiyi, E. Homology modelling and molecular docking studies of selected substituted benzo[d]imidazol-1-yl)methyl)benzimidamide scaffolds on Plasmodium falciparum adenylosuccinate lyase receptor. Bioinform. Biol. Insights 13, 1177932219865533–1177932219865533 (2019).

    Article 

    Google Scholar 

  • 25.

    Handoko, S. D., Ouyang, X., Su, C. T., Kwoh, C. K. & Ong, Y. S. QuickVina: Accelerating AutoDock Vina using gradient-based heuristics for global optimization. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(5), 1266–1272 (2012).

    Article 

    Google Scholar 

  • 26.

    Reverberi, R. & Reverberi, L. Factors affecting the antigen-antibody reaction. Blood Transfus. 5(4), 227–240 (2007).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 27.

    van Oss, C. J., Good, R. J. & Chaudhury, M. K. Nature of the antigen-antibody interaction primary and secondary bonds: Optimal conditions for association and dissociation. J. Chromatogr. 376, 111–119 (1986).

    Article 

    Google Scholar 

  • 28.

    Warren, G. L. et al. A critical assessment of docking programs and scoring functions. J. Med. Chem. 49(20), 5912–5931 (2006).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Ferreira de Freitas, R. & Schapira, M. A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm 8(10), 1970–1981 (2017).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Qi, H. W. & Kulik, H. J. Evaluating unexpectedly short non-covalent distances in X-ray crystal structures of proteins with electronic structure analysis. J. Chem. Inf. Model. 59(5), 2199–2211 (2019).

    CAS 
    Article 

    Google Scholar 

  • 31.

    Armstrong, C. T., Mason, P. E., Anderson, J. L. R. & Dempsey, C. E. Arginine side chain interactions and the role of arginine as a gating charge carrier in voltage sensitive ion channels. Sci. Rep. 6(1), 21759 (2016).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 32.

    Majumdar, A. B., Kim, I. J. & Na, H. Effect of solvent on protein structure and dynamics. Phys. Biol. 17(3), 036006 (2020).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Gao, S., Song, S., Cheng, J., Todo, Y. & Zhou, M. Incorporation of solvent effect into multi-objective evolutionary algorithm for improved protein structure prediction. IEEE/ACM Trans. Comput. Biol. Bioinform. 15(4), 1365–1378 (2018).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Boonserm, P. et al. Kinetics of binding interaction between norfloxacin and monoclonal antibody using surface plasmon resonance. Int. J. Pharma Med. Biol. Sci. 9, 81–86 (2020).

    CAS 

    Google Scholar 

  • 35.

    Chusri, M. et al. Production and characterization of a monoclonal antibody against enrofloxacin. J. Microbiol. Biotechnol. 23, 69–75 (2013).

    CAS 
    Article 

    Google Scholar 

  • 36.

    Chadseesuwan, U. et al. Production of a monoclonal antibody against aflatoxin M1 and its application for detection of aflatoxin M1 in fortified milk. J. Food Drug Anal. 24(4), 780–787 (2016).

    CAS 
    Article 

    Google Scholar 

  • 37.

    Watanabe, H., Satake, A., Kido, Y. & Tsuji, A. Monoclonal-based enzyme-linked immunosorbent assay and immunochromatographic assay for enrofloxacin in biological matrices. Analyst 127(1), 98–103 (2002).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • 38.

    Cui, J., Zhang, K., Huang, Q., Yu, Y. & Peng, X. An indirect competitive enzyme-linked immunosorbent assay for determination of norfloxacin in waters using a specific polyclonal antibody. Anal. Chim. Acta 688(1), 84–89 (2011).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Tochi, B. N. et al. Determination of sarafloxacin and its analogues in milk using an enzyme-linked immunosorbent assay based on a monoclonal antibody. Anal. Methods 8(7), 1626–1636 (2016).

    CAS 
    Article 

    Google Scholar 

  • 40.

    Kaever, T. et al. Linear epitopes in vaccinia virus A27 are targets of protective antibodies induced by vaccination against smallpox. J. Virol. 90(9), 4334–4345 (2016).

    CAS 
    Article 

    Google Scholar 

  • 41.

    Trott, O. & Olson, A. J. Software news and update AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455–461 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link