Preloader

Intelligent modeling and optimization of titanium surface etching for dental implant application

  • Murr, L. E. Metallurgy principles applied to powder bed fusion 3D printing/additive manufacturing of personalized and optimized metal and alloy biomedical implants: An overview. J. Mater. Res. Technol. 9, 1087–1103 (2020).

    CAS 
    Article 

    Google Scholar 

  • Priyadarshini, B. et al. Structural, morphological and biological evaluations of cerium incorporated hydroxyapatite sol–gel coatings on Ti–6Al–4V for orthopaedic applications. J. Mater. Res. Technol. 12, 1319–1338 (2021).

    CAS 
    Article 

    Google Scholar 

  • Nazir, F., Iqbal, M., Khan, A. N., Mazhar, M. & Hussain, Z. Fabrication of robust poly l-lactic acid/cyclic olefinic copolymer (PLLA/COC) blends: Study of physical properties, structure, and cytocompatibility for bone tissue engineering. J. Mater. Res. Technol. 13, 1732–1751 (2021).

    CAS 
    Article 

    Google Scholar 

  • Ansari, M., Naghib, S., Moztarzadeh, F. & Salati, A. Synthesis and characterization of hydroxyapatitecalcium hydroxide for dental composites. Ceram. Silikaty 55, 123–126 (2011).

    CAS 

    Google Scholar 

  • Duyck, J., Slaets, E., Sasaguri, K., Vandamme, K. & Naert, I. Effect of intermittent loading and surface roughness on peri-implant bone formation in a bone chamber model. J. Clin. Periodontol. 34, 998–1006 (2007).

    PubMed 
    Article 

    Google Scholar 

  • Samavedi, S., Whittington, A. R. & Goldstein, A. S. Calcium phosphate ceramics in bone tissue engineering: A review of properties and their influence on cell behavior. Acta Biomater. 9, 8037–8045 (2013).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Balshe, A. A., Eckert, S. E., Koka, S., Assad, D. A. & Weaver, A. L. The effects of smoking on the survival of smooth-and rough-surface dental implants. Int. J. Oral Maxillofac. Implants 23, 1117–1122 (2008).

    PubMed 

    Google Scholar 

  • Balshe, A. A., Assad, D. A., Eckert, S. E., Koka, S. & Weaver, A. L. A retrospective study of the survival of smoothand rough-surface dental implants. Int. J. Oral Maxillofac. Implants 24, 1113–1118 (2009).

    PubMed 

    Google Scholar 

  • Boyle, W. J., Simonet, W. S. & Lacey, D. L. Osteoclast differentiation and activation. Nature 423, 337–342 (2003).

    ADS 
    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gittens, R. A. et al. The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32, 3395–3403 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Azzola, F. et al. Biofilm formation on dental implant surface treated by implantoplasty: An in situ study. Dent. J. 8, 40 (2020).

    Article 

    Google Scholar 

  • Buser, D. et al. Influence of surface characteristics on bone integration of titanium implants. A histomorphometric study in miniature pigs. J. Biomed. Mater. Res. 25, 889–902 (1991).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Szmukler-Moncler, S., Reingewirtz, Y. & Weber, H. P. Bone response to early loading: The effect of surface state. Biol. Mech. Tooth Mov. Craniofacial Adapt. Bost. Harvard Soc. Adv. Orthod. 611, 616 (1996).

    Google Scholar 

  • Szmukler-Moncler, S., Perrin, D., Ahossi, V. & Pointaire, P. Evaluation of BONIT®, a fully resorbable CaP coating obtained by electrochemical deposition, after 6 weeks of healing: a pilot study in the pig maxilla. Key Eng. Mater. 192, 395–398 (2001).

    Google Scholar 

  • Zabala, A. et al. Quantification of dental implant surface wear and topographical modification generated during insertion. Surf. Topogr. Metrol. Prop. 8, 15002 (2020).

    CAS 
    Article 

    Google Scholar 

  • da Silva Brum, I. et al. Ultrastructural characterization of the titanium surface degree IV in dental implant aluminum free (acid attack). J. Biomater. Nanobiotechnol. 11, 151 (2020).

    Article 
    CAS 

    Google Scholar 

  • Isler, S. C. et al. The effects of decontamination methods of dental implant surface on cytokine expression analysis in the reconstructive surgical treatment of peri-implantitis. Odontology 109, 1–11 (2020).

    Google Scholar 

  • Nicolas-Silvente, A. I. et al. Influence of the titanium implant surface treatment on the surface roughness and chemical composition. Materials (Basel). 13, 314 (2020).

    ADS 
    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • Pintão, C. A. F., Correa, D. R. N. & Grandini, C. R. Torsion modulus as a tool to evaluate the role of thermo-mechanical treatment and composition of dental Ti–Zr alloys. J. Mater. Res. Technol. 8, 4631–4641 (2019).

    Article 
    CAS 

    Google Scholar 

  • Elias, C. N., Fernandes, D. J., de Souza, F. M., dos Monteiro, E. S. & de Biasi, R. S. Mechanical and clinical properties of titanium and titanium-based alloys (Ti G2, Ti G4 cold worked nanostructured and Ti G5) for biomedical applications. J. Mater. Res. Technol. 8, 1060–1069 (2019).

    CAS 
    Article 

    Google Scholar 

  • Ehrenfest, D. M. D. et al. Identification card and codification of the chemical and morphological characteristics of 62 dental implant surfaces. Part 1: Description of the Implant Surface Identification Standard (ISIS) codification system. POSEIDO 2, 7–22 (2014).

    Google Scholar 

  • Chrcanovic, B. R., Albrektsson, T. & Wennerberg, A. Bone quality and quantity and dental implant failure: A systematic review and meta-analysis. Int. J. Prosthodont. 30, 219–237 (2017).

    PubMed 
    Article 

    Google Scholar 

  • Chrcanovic, B. R., Kisch, J., Albrektsson, T. & Wennerberg, A. Factors influencing early dental implant failures. J. Dent. Res. 95, 995–1002 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Elias, C. N. Titanium dental implant surfaces. Matéria (Rio Janeiro) 15, 138–142 (2010).

    Article 

    Google Scholar 

  • Grizon, F., Aguado, E., Huré, G., Baslé, M. F. & Chappard, D. Enhanced bone integration of implants with increased surface roughness: A long term study in the sheep. J. Dent. 30, 195–203 (2002).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fouziya, B. et al. Surface modifications of titanium implants—The new, the old, and the never heard of options. J. Adv. Clin. Res. Insights 3, 215–219 (2016).

    Article 

    Google Scholar 

  • Jemat, A., Ghazali, M. J., Razali, M. & Otsuka, Y. Surface modifications and their effects on titanium dental implants. Biomed. Res. Int. 2015, 1–11 (2015).

    Article 
    CAS 

    Google Scholar 

  • Braceras, I., De Maeztu, M. A., Alava, J. I. & Gay-Escoda, C. In vivo low-density bone apposition on different implant surface materials. Int. J. Oral Maxillofac. Surg. 38, 274–278 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Patil, P. S. & Bhongade, M. L. Dental implant surface modifications: A review. IOSR-JDMS 15, 132–141 (2016).

    Google Scholar 

  • Wennerberg, A. & Albrektsson, T. On implant surfaces: A review of current knowledge and opinions. Int. J. Oral Maxillofac. Implants 25, 63–74 (2010).

    PubMed 

    Google Scholar 

  • Marin, C. et al. Removal torque and histomorphometric evaluation of bioceramic grit-blasted/acid-etched and dual acid-etched implant surfaces: An experimental study in dogs. J. Periodontol. 79, 1942–1949 (2008).

    PubMed 
    Article 

    Google Scholar 

  • Klokkevold, P. R., Nishimura, R. D., Adachi, M. & Caputo, A. Osseointegration enhanced by chemical etching of the titanium surface. A torque removal study in the rabbit. Clin. Oral Implants Res. 8, 442–447 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cho, S.-A. & Park, K.-T. The removal torque of titanium screw inserted in rabbit tibia treated by dual acid etching. Biomaterials 24, 3611–3617 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Baker, D., London, R. M. & O’Neal, R. Rate of pull-out strength gain of dual-etched titanium implants: A comparative study in rabbits. Int. J. Oral Maxillofac. Implants 14, 722–728 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Cochran, D. L. et al. The use of reduced healing times on ITI® implants with a sandblasted and acid-etched (SLA) surface: Early results from clinical trials on ITI® SLA implants. Clin. Oral Implants Res. 13, 144–153 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Roccuzzo, M., Bunino, M., Prioglio, F. & Bianchi, S. D. Early loading of sandblasted and acid-etched (SLA) implants: A prospective split-mouth comparative study: 1-year results. Clin. Oral Implants Res. 12, 572–578 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Testori, T. et al. A multicenter prospective evaluation of 2-months loaded Osseotite® implants placed in the posterior jaws: 3-year follow-up results. Clin. Oral Implants Res. 13, 154–161 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Lazzara, R. J., Porter, S. S., Testori, T., Galante, J. & Zetterqvist, L. A prospective multicenter study evaluating loading of osseotite implants two months after placement: 1-year results. J. Esthet. Restor. Dent. 10, 280–289 (1998).

    CAS 
    Article 

    Google Scholar 

  • Esfe, M. H. & Tilebon, S. M. S. Statistical and artificial based optimization on thermo-physical properties of an oil based hybrid nanofluid using NSGA-II and RSM. Phys. A Stat. Mech. Appl. 537, 122126 (2020).

    Article 
    CAS 

    Google Scholar 

  • Salehi, M. M., Hakkak, F., Tilebon, S. M., Ataeefard, M. & Rafizadeh, M. Intelligently optimized electrospun polyacrylonitrile/poly (vinylidene fluoride) nanofiber: Using artificial neural networks. Express Polym. Lett. 14, 1003–1017 (2020).

    CAS 
    Article 

    Google Scholar 

  • Ataeefard, M., Tilebon, S. M. S., Etezad, S. M. & Mahdavi, S. Intelligent modeling and optimization of environmentally friendly green enzymatic deinking of printed paper. Environ. Sci. Pollut. Res. 29, 1–14 (2022).

    Article 

    Google Scholar 

  • Ataeefard, M. & Tilebon, S. M. S. Seeking a paper for digital printing with maximum gamut volume: A lesson from artificial intelligence. J. Coat. Technol. Res. 19, 285–293 (2022).

    CAS 
    Article 

    Google Scholar 

  • Kohler, R., Sowards, K. & Medina, H. Numerical model for acid-etching of titanium: Engineering surface roughness for dental implants. J. Manuf. Process. 59, 113–121 (2020).

    Article 

    Google Scholar 

  • Ban, S., Iwaya, Y., Kono, H. & Sato, H. Surface modification of titanium by etching in concentrated sulfuric acid. Dent. Mater. 22, 1115–1120 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Ataeefard, M., Sadati Tilebon, S. M. & Saeb, M. R. Intelligent modeling and optimization of emulsion aggregation method for producing green printing ink. Green Process. Synth. 8, 703–718 (2019).

    CAS 
    Article 

    Google Scholar 

  • Hekmatjoo, N. et al. Modeling of glycolysis of flexible polyurethane foam wastes by artificial neural network methodology. Polym. Int. 64, 1111–1120 (2015).

    CAS 
    Article 

    Google Scholar 

  • Xu, Y., Zhu, Y., Xiao, G. & Ma, C. Application of artificial neural networks to predict corrosion behavior of Ni–SiC composite coatings deposited by ultrasonic electrodeposition. Ceram. Int. 40, 5425–5430 (2014).

    CAS 
    Article 

    Google Scholar 

  • Tilebon, S. M. S. & Norouzbeigi, R. Anti-icing nano SnO2 coated metallic surface wettability: Optimization via statistical design. Surf. Interfaces 21, 100720 (2020).

    CAS 
    Article 

    Google Scholar 

  • Yousefi, H. & Fallahnezhad, M. Multi-objective higher order polynomial networks to model insertion force of bevel-tip needles. Int. J. Nat. Comput. Res. 5, 54–70 (2015).

    Article 

    Google Scholar 

  • Fallahnezhad, M. & Yousefi, H. Needle insertion force modeling using genetic programming polynomial higher order neural network. In Artificial Higher Order Neural Networks for Modeling and Simulation (ed. Zhang, M.) 58–76 (IGI Global, 2013).

    Chapter 

    Google Scholar 

  • Ataeefard, M., Tilebon, S. M. S. & Saeb, M. R. Intelligent modeling and optimization of emulsion aggregation method for producing green printing ink. Green Process. Synth. 8, 703–718 (2019).

    CAS 
    Article 

    Google Scholar 

  • Klokkevold, P. R. et al. Early endosseous integration enhanced by dual acid etching of titanium: A torque removal study in the rabbit. Clin. Oral Implants Res. 12, 350–357 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Matos, G. R. M. Surface roughness of dental implant and osseointegration. J. Maxillofac. Oral Surg. 20, 1–4 (2021).

    PubMed 
    Article 

    Google Scholar 

  • Ehrenfest, D. M. D. et al. Identification card and codification of the chemical and morphological characteristics of 62 dental implant surfaces. Part 3: Sand-blasted/acid-etched (SLA type) and related surfaces (group 2A, main subtractive process). POSEIDO 2, 37–55 (2014).

    Google Scholar 

  • Dohan Ehrenfest, D. M., Vazquez, L., Park, Y.-J., Sammartino, G. & Bernard, J.-P. Identification card and codification of the chemical and morphological characteristics of 14 dental implant surfaces. J. Oral Implantol. 37, 525–542 (2011).

    PubMed 
    Article 

    Google Scholar 

  • Kalemaj, Z., Scarano, A., Valbonetti, L., Rapone, B. & Grassi, F. R. Bone response to four dental implants with different surface topographies: A histologic and histometric study in Minipigs. Int. J. Periodont. Restor. Dent. 36, 745–754 (2016).

    Article 

    Google Scholar 

  • Alla, R. K. et al. Surface roughness of implants: A review. Trends Biomater. Artif. Organs 25, 112–118 (2011).

    Google Scholar 

  • Mendonça, G., Mendonça, D. B. S., Aragao, F. J. L. & Cooper, L. F. Advancing dental implant surface technology—From micron-to nanotopography. Biomaterials 29, 3822–3835 (2008).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Pelaez-Vargas, A. et al. Isotropic micropatterned silica coatings on zirconia induce guided cell growth for dental implants. Dent. Mater. 27, 581–589 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Abbas, A. T. et al. ANN surface roughness optimization of AZ61 magnesium alloy finish turning: Minimum machining times at prime machining costs. Materials (Basel). 11, 808 (2018).

    ADS 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Meddour, I., Yallese, M. A., Bensouilah, H., Khellaf, A. & Elbah, M. Prediction of surface roughness and cutting forces using RSM, ANN, and NSGA-II in finish turning of AISI 4140 hardened steel with mixed ceramic tool. Int. J. Adv. Manuf. Technol. 97, 1931–1949 (2018).

    Article 

    Google Scholar 

  • Lazzara, R. J., Testori, T., Trisi, P., Porter, S. S. & Weinstein, R. L. A human histologic analysis of osseotite and machined surfaces using implants with 2 opposing surfaces. Int. J. Periodont. Restor. Dent. 19, 117–129 (1999).

    CAS 

    Google Scholar 

  • de Carvalho, D. R. et al. Characterization and in vitro cytocompatibility of an acid-etched titanium surface. Braz. Dent. J. 21, 3–11 (2010).

    MathSciNet 
    PubMed 
    Article 

    Google Scholar 

  • Ogawa, T. et al. Biomechanical evaluation of osseous implants having different surface topographies in rats. J. Dent. Res. 79, 1857–1863 (2000).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Conforto, E., Caillard, D., Aronsson, B. O. & Descouts, P. Electron microscopy on titanium implants for bone replacement after “SLA” surface treatment. Eur. Cells Mater. 3, 9–10 (2002).

    Article 

    Google Scholar 

  • Perrin, D., Szmukler-Moncler, S., Echikou, C., Pointaire, P. & Bernard, J.-P. Bone response to alteration of surface topography and surface composition of sandblasted and acid etched (SLA) implants. Clin. Oral Implants Res. 13, 465–469 (2002).

    PubMed 
    Article 

    Google Scholar 

  • Ponsonnet, L. et al. Relationship between surface properties (roughness, wettability) of titanium and titanium alloys and cell behaviour. Mater. Sci. Eng. C 23, 551–560 (2003).

    Article 
    CAS 

    Google Scholar 

  • Source link