Morrison, J. L., Breitling, R., Higham, D. J. & Gilbert, D. R. A lock-and-key model for protein–protein interactions. Bioinformatics 22, 2012–2019 (2006).
Google Scholar
Baspinar, A., Cukuroglu, E., Nussinov, R., Keskin, O. & Gursoy, A. PRISM: a web server and repository for prediction of protein–protein interactions and modeling their 3D complexes. Nucleic Acids Res. 42, W285 (2014).
Google Scholar
Murakami, Y. & Mizuguchi, K. Applying the naïve Bayes classifier with kernel density estimation to the prediction of protein–protein interaction sites. Bioinformatics 26, 1841–1848 (2010).
Google Scholar
Gainza, P. et al. Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods 17, 184–192 (2020).
Google Scholar
Montoya, M. A PrePPI way to make predictions. Nat. Struct. Mol. Biol. 19, 1067 (2012).
Google Scholar
Northey, T. C., Bareši, A. & Martin, A. C. R. IntPred: a structure-based predictor of protein–protein interaction sites. Bioinformatics 34, 223–229 (2018).
Google Scholar
Baranwal, M. et al. Struct2Graph: a graph attention network for structure based predictions of protein–protein interactions. Preprint at bioRxiv https://doi.org/10.1101/2020.09.17.301200 (2020).
Chen, K.-H., Wang, T.-F. & Hu, Y.-J. Protein–protein interaction prediction using a hybrid feature representation and a stacked generalization scheme. BMC Bioinformatics 20, 308 (2019).
Google Scholar
Sarkar, D. & Saha, S. Machine-learning techniques for the prediction of protein–protein interactions. J. Biosci. 44, 104 (2019).
Google Scholar
Wang, Y. et al. Predicting protein interactions using a deep learning method-stacked sparse autoencoder combined with a probabilistic classification vector machine. Complexity 2018, 4216813 (2018).
Kotov, N. A. Inorganic nanoparticles as protein mimics. Science 330, 188–189 (2010).
Google Scholar
Pinals, R. L., Chio, L., Ledesma, F. & Landry, M. P. Engineering at the nano–bio interface: harnessing the protein corona towards nanoparticle design and function. Analyst 145, 5090–5112 (2020).
Google Scholar
Govan, J. & Gun’ko, Y. K. Recent progress in chiral inorganic nanostructures. Nanoscience 3, 1–30 (2016).
Google Scholar
Weininger, D. SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules. J. Chem. Inf. Model. 28, 31–36 (1988).
Google Scholar
Xu, L. et al. Enantiomer-dependent immunological response to chiral nanoparticles. Nature 601, 366–373 (2022).
Google Scholar
Cha, S.-H. et al. Shape-dependent biomimetic inhibition of enzyme by nanoparticles and their antibacterial activity. ACS Nano 9, 9097–9105 (2015).
Google Scholar
Ravikumar, K. M., Huang, W. & Yang, S. Coarse-grained simulations of protein–protein association: an energy landscape perspective. Biophys. J. 103, 837–845 (2012).
Google Scholar
Kmiecik, S. et al. Coarse-grained protein models and their applications. Chem. Rev. 116, 7898–7936 (2016).
Google Scholar
Wang, Y. et al. Anti-biofilm activity of graphene quantum dots via self-assembly with bacterial amyloid proteins. ACS Nano 13, 4278–4289 (2019).
Google Scholar
Acosta-Tapia, N., Galindo, J. F. & Baldiris, R. Insights into the effect of Lowe syndrome-causing mutation p.Asn591Lys of OCRL-1 through protein–protein interaction networks and molecular dynamics simulations. J. Chem. Inf. Model. 60, 1019–1027 (2020).
Google Scholar
Verma, M. K. & Shakya, S. LRP-1 mediated endocytosis of EFE across the blood–brain barrier; protein–protein interaction and molecular dynamics analysis. Int. J. Pept. Res. Ther. 27, 71–81 (2021).
Google Scholar
Li, Z. L. & Buck, M. Modified potential functions result in enhanced predictions of a protein complex by all-atom molecular dynamics simulations, confirming a stepwise association process for native protein–protein interactions. J. Chem. Theory Comput. 15, 4318–4331 (2019).
Google Scholar
Liu, Y. et al. A compact biosensor for binding kinetics analysis of protein–protein interaction. IEEE Sens. J. 19, 11955–11960 (2019).
Google Scholar
Moscetti, I., Cannistraro, S. & Bizzarri, A. R. Surface plasmon resonance sensing of biorecognition interactions within the tumor suppressor P53 network. Sensors https://doi.org/10.3390/s17112680 (2017).
Verboven, C. et al. Actin-DBP: the perfect structural fit? Acta Crystallogr. D 59, 263–273 (2003).
Google Scholar
Dolinsky, T. J. et al. PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations. Nucleic Acids Res. 35, 522–525 (2007).
Google Scholar
Kawabata, T. Detection of multiscale pockets on protein surfaces using mathematical morphology. Proteins 78, 1195–1211 (2010).
Google Scholar
Osipov, M. A., Pickup, B. T. & Dunmur, D. A. A new twist to molecular chirality: intrinsic chirality indices. Mol. Phys. 84, 1193–1206 (1995).
Google Scholar
May, A. et al. Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins. Bioinformatics 30, 326–334 (2014).
Google Scholar
Vishveshwara, S., Brinda, K. V. & Kannan, N. Protein structure: insights from graph theory. J. Theor. Comput. Chem. 1, 187–211 (2002).
Google Scholar
Bahar, I., Atilgan, A. R. & Erman, B. Direct evaluation of thermal fluctuations in proteins using a single-parameter harmonic potential. Fold. Des. 2, 173–181 (1997).
Google Scholar
Haliloglu, T., Bahar, I. & Erman, B. Gaussian dynamics of folded proteins. Phys. Rev. Lett. 79, 3090–3093 (1997).
Google Scholar
Levy, E. D., Pereira-Leal, J. B., Chothia, C. & Teichmann, S. A. 3D complex: a structural classification of protein complexes. PLoS Comput. Biol. 2, 1395–1406 (2006).
Google Scholar
Gavin, A. C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).
Google Scholar
Ye, Q., West, A. M. V., Silletti, S. & Corbett, K. D. Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Sci. 29, 1890–1901 (2020).
Google Scholar
Romei, M. G., Lin, C., Mathews, I. I. & Boxer, S. G. Electrostatic control of photoisomerization pathways in proteins. Science 367, 76–79 (2020).
Google Scholar
Sachpatzidis, A. et al. Crystallographic studies of phosphonate-based α-reaction transition-state analogues complexed to tryptophan synthase. Biochemistry 38, 12665–12674 (1999).
Google Scholar
Ju, J., Regmi, S., Fu, A., Lim, S. & Liu, Q. Graphene quantum dot based charge-reversal nanomaterial for nucleus-targeted drug delivery and efficiency controllable photodynamic therapy. J. Biophoton. 12, e201800367 (2019).
Google Scholar
Ahmed, K. B. A., Raman, T. & Veerappan, A. Future prospects of antibacterial metal nanoparticles as enzyme inhibitor. Mater. Sci. Eng. C 68, 939–947 (2016).
Google Scholar
Unal, M. A. et al. Graphene oxide nanosheets interact and interfere with SARS-CoV-2 surface proteins and cell receptors to inhibit infectivity. Small 17, 2101483 (2021).
Google Scholar
Blanco-López, M. C. & Rivas, M. Nanoparticles for bioanalysis. Anal. Bioanal. Chem. 411, 1789–1790 (2019).
Google Scholar
Ma, W. et al. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4, 2689 (2013).
Google Scholar
Kagan, V. E. et al. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation. Nat. Nanotechnol. 5, 354–359 (2010).
Google Scholar
Pinals, R. L. et al. Quantitative protein corona composition and dynamics on carbon nanotubes in biological environments. Angew. Chem. Int. Ed. 59, 23668–23677 (2020).
Google Scholar
Monopoli, M. P., Pitek, A. S., Lynch, I. & Dawson, K. A. Formation and characterization of the nanoparticle–protein corona. Methods Mol. Biol. 1025, 137–155 (2013).
Google Scholar
Madathiparambil Visalakshan, R. et al. The influence of nanoparticle shape on protein corona formation. Small https://doi.org/10.1002/smll.202000285 (2020).
Faridi, A. et al. Graphene quantum dots rescue protein dysregulation of pancreatic β-cells exposed to human islet amyloid polypeptide. Nano Res. 12, 2827–2834 (2019).
Google Scholar
Wang, M. et al. Graphene quantum dots against human IAPP aggregation and toxicity: in vivo. Nanoscale 10, 19995–20006 (2018).
Google Scholar
Lin, W. et al. Control of protein orientation on gold nanoparticles. J. Phys. Chem. C 119, 21035–21043 (2015).
Google Scholar
Ma, C. D., Wang, C., Acevedo-Vélez, C., Gellman, S. H. & Abbott, N. L. Modulation of hydrophobic interactions by proximally immobilized ions. Nature 517, 347–350 (2015).
Google Scholar
Horovitz, A. Non-additivity in protein–protein interactions. J. Mol. Biol. 196, 733–735 (1987).
Google Scholar
Batista, C. A. S. et al. Nonadditivity of nanoparticle interactions. Science 350, https://doi.org/10.1126/science.1242477 (2015).
Qiao, Y., Xiong, Y., Gao, H., Zhu, X. & Chen, P. Protein–protein interface hot spots prediction based on a hybrid feature selection strategy. BMC Bioinformatics 19, 14 (2018).
Google Scholar
Kyte, J. & Doolittle, R. F. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 157, 105–132 (1982).
Google Scholar
Jumper, J. M., Faruk, N. F., Freed, K. F. & Sosnick, T. R. Accurate calculation of side chain packing and free energy with applications to protein molecular dynamics. PLoS Comput. Biol. 14, e1006342 (2018).
Google Scholar
Chakrabarty, B., Naganathan, V., Garg, K., Agarwal, Y. & Parekh, N. NAPS update: network analysis of molecular dynamics data and protein–nucleic acid complexes. Nucleic Acids Res. 47, W462–W470 (2019).
Google Scholar
Chakraborty, S., Venkatramani, R., Rao, B. J., Asgeirsson, B. & Dandekar, A. M. Protein structure quality assessment based on the distance profiles of consecutive backbone Cα atoms. F1000Res. 2, 1–12 (2013).
Google Scholar
Brancolini, G. & Tozzini, V. Multiscale modeling of proteins interaction with functionalized nanoparticles. Curr. Opin. Colloid Interface Sci. 41, 66–73 (2019).
Google Scholar
Hazarika, Z. & Jha, A. N. Computational analysis of the silver nanoparticle–human serum albumin complex. ACS Omega 5, 170–178 (2020).
Google Scholar
Samal, A. et al. Comparative analysis of two siscretizations of Ricci curvature for complex networks. Sci. Rep. 8, 8650 (2018).
Google Scholar
Eidi, M. & Jost, J. Ollivier Ricci curvature of directed hypergraphs. Sci. Rep. 10, 12466 (2020).
Google Scholar
Yang, R. & Bogdan, P. Controlling the multifractal generating measures of complex networks. Sci. Rep. 10, 5541 (2020).
Google Scholar
Xiao, X., Chen, H. & Bogdan, P. Deciphering the generating rules and functionalities of complex networks. Sci. Rep. 11, 22964 (2021).
Google Scholar
Pedregosa, F. et al. Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
Google Scholar
Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 785–794 (ACM, 2016).
Cha, M. et al. Unifying structural descriptors for biological and bioinspired nanoscale complexes [source code]. Code Ocean https://doi.org/10.24433/CO.7800040.V1 (2022).

