Tsouko, E. et al. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832–14849 (2015).
Google Scholar
Efthymiou, M.-N., Pateraki, C., Papapostolou, H., Lin, C. S. K. & Koutinas, A. Restructuring the sunflower-based biodiesel industry into a circular bio-economy business model converting sunflower meal and crude glycerol into succinic acid and value-added co-products. Biomass Bioenergy 155, 106265 (2021).
Google Scholar
Bangar, S. P. & Whiteside, W. S. Nano-cellulose reinforced starch bio composite films—A review on green composites. Int. J. Biol. Macromol. 185, 849–860 (2021).
Google Scholar
Zhang, X. et al. Physicochemical, mechanical and structural properties of composite edible films based on whey protein isolate/psyllium seed gum. Int. J. Biol. Macromol. 153, 892–901 (2020).
Google Scholar
Sanchez-Salvador, J. L., Balea, A., Monte, M. C., Negro, C. & Blanco, A. Chitosan grafted/cross-linked with biodegradable polymers: A review. Int. J. Biol. Macromol. 178, 325–343 (2021).
Google Scholar
Chiralt, A., González-Martínez, C., Vargas, M. & Atarés, L. 18—Edible films and coatings from proteins. In Proteins in Food Processing 2nd edn (ed. Yada, R. Y.) 477–500 (Woodhead Publishing, 2018). https://doi.org/10.1016/B978-0-08-100722-8.00019-X.
Google Scholar
Malik, M. A. & Saini, C. S. Rheological and structural properties of protein isolates extracted from dephenolized sunflower meal: Effect of high intensity ultrasound. Food Hydrocoll. 81, 229–241 (2018).
Google Scholar
Salgado, P. R., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N. & Montero, M. P. Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocoll. 33, 74–84 (2013).
Google Scholar
Hur, D. H. et al. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene. Biochem. Eng. J. 156, 107527 (2020).
Google Scholar
Zhang, W., Zhang, Y., Cao, J. & Jiang, W. Improving the performance of edible food packaging films by using nanocellulose as an additive. Int. J. Biol. Macromol. 166, 288–296 (2021).
Google Scholar
Nascimento, E. S. et al. All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packag. Shelf Life 29, 100715 (2021).
Google Scholar
Ferrer, A., Pal, L. & Hubbe, M. Nanocellulose in packaging: Advances in barrier layer technologies. Ind. Crops Prod. 95, 574–582 (2017).
Google Scholar
Leite, L. S. F., Ferreira, C. M., Corrêa, A. C., Moreira, F. K. V. & Mattoso, L. H. C. Scaled-up production of gelatin-cellulose nanocrystal bionanocomposite films by continuous casting. Carbohydr. Polym. 238, 116198 (2020).
Google Scholar
Martelli-Tosi, M. et al. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydr. Polym. 198, 61–68 (2018).
Google Scholar
Qazanfarzadeh, Z. & Kadivar, M. Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Int. J. Biol. Macromol. 91, 1134–1140 (2016).
Google Scholar
González, A. & AlvarezIgarzabal, C. I. Nanocrystal-reinforced soy protein films and their application as active packaging. Food Hydrocoll. 43, 777–784 (2015).
Google Scholar
Šešlija, S. et al. Pectin/carboxymethylcellulose films as a potential food packaging material. Macromol. Symp. 378, 1600163 (2018).
Google Scholar
Moncada, B. J., Aristizábal, M. V. & Cardona, A. C. A. Design strategies for sustainable biorefineries. Adv. Biorefinery Eng. Food Supply Chain Waste Valoris 116, 122–134 (2016).
Kaur, J., Sarma, A. K., Jha, M. K. & Gera, P. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol. Rep. 27, e00487 (2020).
Google Scholar
Rattanapoltee, P., Dujjanutat, P., Muanruksa, P. & Kaewkannetra, P. Biocircular platform for third generation biodiesel production: Batch/fed batch mixotrophic cultivations of microalgae using glycerol waste as a carbon source. Biochem. Eng. J. 175, 108128 (2021).
Google Scholar
Li, X. et al. A novel strategy of feeding nitrate for cost-effective production of poly-γ-glutamic acid from crude glycerol by Bacillus licheniformis WX-02. Biochem. Eng. J. 176, 108156 (2021).
Google Scholar
Meneses, D. P. et al. Esterase production by Aureobasidium pullulans URM 7059 in stirred tank and airlift bioreactors using residual biodiesel glycerol as substrate. Biochem. Eng. J. 168, 107954 (2021).
Google Scholar
International Energy Agency. Global biofuel production in 2019 and forecast to 2025. IEA https://www.iea.org/data-and-statistics/charts/global-biofuel-production-in-2019-and-forecast-to-2025 (2021).
Tsouko, E., Maina, S., Ladakis, D., Kookos, I. K. & Koutinas, A. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renew. Energy 160, 944–954 (2020).
Google Scholar
Kim, Y. et al. Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem. Eng. J. 142, 135–144 (2019).
Google Scholar
Yan, H. et al. Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocoll. 72, 127–135 (2017).
Google Scholar
Rollini, M. et al. From cheese whey permeate to Sakacin-A/bacterial cellulose nanocrystal conjugates for antimicrobial food packaging applications: A circular economy case study. Sci. Rep. 10, 21358 (2020).
Google Scholar
Vasconcelos, N. F. et al. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydr. Polym. 155, 425–431 (2017).
Google Scholar
Klemm, D. et al. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438–5466 (2011).
Google Scholar
Kian, L. K., Jawaid, M., Ariffin, H. & Karim, Z. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol. 114, 54–63 (2018).
Google Scholar
Cui, S., Zhang, S., Ge, S., Xiong, L. & Sun, Q. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind. Crops Prod. 83, 346–352 (2016).
Google Scholar
Lee, C. M., Gu, J., Kafle, K., Catchmark, J. & Kim, S. H. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density. Carbohydr. Polym. 133, 270–276 (2015).
Google Scholar
Martínez-Sanz, M., Lopez-Rubio, A. & Lagaron, J. M. Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr. Polym. 85, 228–236 (2011).
Google Scholar
García-Ramón, J. A. et al. Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis. Int. J. Biol. Macromol. 187, 35–42 (2021).
Google Scholar
Mondragon, G., Peña-Rodriguez, C., González, A., Eceiza, A. & Arbelaiz, A. Bionanocomposites based on gelatin matrix and nanocellulose. Eur. Polym. J. 62, 1–9 (2015).
Google Scholar
Acquah, C., Zhang, Y., Dubé, M. A. & Udenigwe, C. C. Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. Curr. Res. Food Sci. 2, 61–69 (2020).
Google Scholar
Andritsou, V. et al. Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega 3, 10365–10373 (2018).
Google Scholar
Han, Y., Yu, M. & Wang, L. Soy protein isolate nanocomposites reinforced with nanocellulose isolated from licorice residue: Water sensitivity and mechanical strength. Ind. Crops Prod. 117, 252–259 (2018).
Google Scholar
Kang, H. et al. High-performance and fully renewable soy protein isolate-based film from microcrystalline cellulose via bio-inspired poly(dopamine) surface modification. ACS Sustain. Chem. Eng. 4, 4354–4360 (2016).
Google Scholar
Li, C. et al. Mechanical and thermal properties of microcrystalline cellulose-reinforced soy protein isolate–gelatin eco-friendly films. RSC Adv. 5, 56518–56525 (2015).
Google Scholar
George, J. & Siddaramaiah. High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr. Polym. 87, 2031–2037 (2012).
Salgado, P. R., Molina Ortiz, S. E., Petruccelli, S. & Mauri, A. N. Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocoll. 24, 525–533 (2010).
Google Scholar
Nam, J. et al. Effect of cross-linkable bacterial cellulose nanocrystals on the physicochemical properties of silk sericin films. Polym. Test. 97, 107161 (2021).
Google Scholar
Bilck, A. P., Grossmann, M. V. E. & Yamashita, F. Biodegradable mulch films for strawberry production. Polym. Test. 29, 471–476 (2010).
Google Scholar
García, J. M., Medina, R. J. & Olías, J. M. Quality of strawberries automatically packed in different plastic films. J. Food Sci. 63, 1037–1041 (1998).
Google Scholar
Giuggioli, N. R., Girgenti, V., Briano, R. & Peano, C. Sustainable supply-chain: Evolution of the quality characteristics of strawberries stored in green film packaging. CyTA J. Food 15, 211–219 (2017).
Google Scholar
Robinson, J. E., Browne, K. M. & Burton, W. G. Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol. 81, 399–408 (1975).
Google Scholar
Maringgal, B., Hashim, N., Mohamed Amin Tawakkal, I. S. & Muda Mohamed, M. T. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 96, 253–267 (2020).
Google Scholar
Duarte-Molina, F., Gómez, P. L., Castro, M. A. & Alzamora, S. M. Storage quality of strawberry fruit treated by pulsed light: Fungal decay, water loss and mechanical properties. Innov. Food Sci. Emerg. Technol. 34, 267–274 (2016).
Google Scholar
Khodaei, D., Hamidi-Esfahani, Z. & Rahmati, E. Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS J. 23, 17–23 (2021).
Google Scholar
Del Nobile, M. A., Baiano, A., Benedetto, A. & Massignan, L. Respiration rate of minimally processed lettuce as affected by packaging. J. Food Eng. 74, 60–69 (2006).
Google Scholar
Ishikawa, Y. & Hirata, T. Color change model for broccoli packed in polymeric films. Trans. ASAE 44, 923 (2001).
Google Scholar
Giampieri, F. et al. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 28, 9–19 (2012).
Google Scholar
Pott, D. M., Vallarino, J. G., Osorio, S. & Amaya, I. Fruit ripening and QTL for fruit quality in the octoploid strawberry. In The Genomes of Rosaceous Berries and Their Wild Relatives (eds Hytönen, T. et al.) 95–113 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-76020-9_8.
Google Scholar
Hwang, H., Kim, Y.-J. & Shin, Y. Influence of ripening stage and cultivar on physicochemical properties, sugar and organic acid profiles, and antioxidant compositions of strawberries. Food Sci. Biotechnol. 28, 1659–1667 (2019).
Google Scholar
Paniagua, A. C., East, A. R., Hindmarsh, J. P. & Heyes, J. A. Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biol. Technol. 79, 13–19 (2013).
Google Scholar
Posé, S., Morris, V. J., Kirby, A. R., Quesada, M. A. & Mercado, J. A. Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy. Ann. Bot. 114, 1375–1383 (2014).
Google Scholar
Shahi, N., Min, B. & Bonsi, E. Microbial decontamination of fresh produce (strawberry) using washing solutions. J. Food Res. 4, p128 (2015).
Google Scholar
Papagiannopoulos, A. & Vlassi, E. Stimuli-responsive nanoparticles by thermal treatment of bovine serum albumin inside its complexes with chondroitin sulfate. Food Hydrocoll. 87, 602–610 (2019).
Google Scholar
Doebelin, N. & Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 48, 1573–1580 (2015).
Google Scholar
Nara, S. & Komiya, T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch Stärke 35, 407–410 (1983).
Google Scholar
ISO. ISO 527-3:2018, Plastics—Determination of tensile properties—Part 3: Test conditions for films and sheets. ISO https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/03/70307.html (2018).
ASTM. ASTM E96-95, Standard Test Method for Water Vapor Transmission of Materials. ASTM INTERNATIONAL https://www.astm.org/DATABASE.CART/HISTORICAL/E96-95.htm (2017).
Zhou, X. et al. Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohydr. Polym. 251, 117117 (2021).
Google Scholar
Sangsuwan, J., Pongsapakworawat, T., Bangmo, P. & Sutthasupa, S. Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT 74, 14–20 (2016).
Google Scholar
Lan, W., Zhang, R., Ahmed, S., Qin, W. & Liu, Y. Effects of various antimicrobial polyvinyl alcohol/tea polyphenol composite films on the shelf life of packaged strawberries. LWT 113, 108297 (2019).
Google Scholar
Guerreiro, A. C., Gago, C. M. L., Faleiro, M. L., Miguel, M. G. C. & Antunes, M. D. C. The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biol. Technol. 110, 51–60 (2015).
Google Scholar
Baranyi, J. & Roberts, T. A. A dynamic approach to predicting bacterial growth in food. Spec. Issue Predict. Model. 23, 277–294 (1994).
Google Scholar
Lie, S. The Ebc-Ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 79, 37–41 (1973).
Google Scholar

