Preloader

Development of biodegradable films using sunflower protein isolates and bacterial nanocellulose as innovative food packaging materials for fresh fruit preservation

  • Tsouko, E. et al. Bacterial cellulose production from industrial waste and by-product streams. Int. J. Mol. Sci. 16, 14832–14849 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Efthymiou, M.-N., Pateraki, C., Papapostolou, H., Lin, C. S. K. & Koutinas, A. Restructuring the sunflower-based biodiesel industry into a circular bio-economy business model converting sunflower meal and crude glycerol into succinic acid and value-added co-products. Biomass Bioenergy 155, 106265 (2021).

    CAS 
    Article 

    Google Scholar 

  • Bangar, S. P. & Whiteside, W. S. Nano-cellulose reinforced starch bio composite films—A review on green composites. Int. J. Biol. Macromol. 185, 849–860 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zhang, X. et al. Physicochemical, mechanical and structural properties of composite edible films based on whey protein isolate/psyllium seed gum. Int. J. Biol. Macromol. 153, 892–901 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sanchez-Salvador, J. L., Balea, A., Monte, M. C., Negro, C. & Blanco, A. Chitosan grafted/cross-linked with biodegradable polymers: A review. Int. J. Biol. Macromol. 178, 325–343 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chiralt, A., González-Martínez, C., Vargas, M. & Atarés, L. 18—Edible films and coatings from proteins. In Proteins in Food Processing 2nd edn (ed. Yada, R. Y.) 477–500 (Woodhead Publishing, 2018). https://doi.org/10.1016/B978-0-08-100722-8.00019-X.

    Chapter 

    Google Scholar 

  • Malik, M. A. & Saini, C. S. Rheological and structural properties of protein isolates extracted from dephenolized sunflower meal: Effect of high intensity ultrasound. Food Hydrocoll. 81, 229–241 (2018).

    CAS 
    Article 

    Google Scholar 

  • Salgado, P. R., López-Caballero, M. E., Gómez-Guillén, M. C., Mauri, A. N. & Montero, M. P. Sunflower protein films incorporated with clove essential oil have potential application for the preservation of fish patties. Food Hydrocoll. 33, 74–84 (2013).

    CAS 
    Article 

    Google Scholar 

  • Hur, D. H. et al. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene. Biochem. Eng. J. 156, 107527 (2020).

    CAS 
    Article 

    Google Scholar 

  • Zhang, W., Zhang, Y., Cao, J. & Jiang, W. Improving the performance of edible food packaging films by using nanocellulose as an additive. Int. J. Biol. Macromol. 166, 288–296 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Nascimento, E. S. et al. All-cellulose nanocomposite films based on bacterial cellulose nanofibrils and nanocrystals. Food Packag. Shelf Life 29, 100715 (2021).

    Article 

    Google Scholar 

  • Ferrer, A., Pal, L. & Hubbe, M. Nanocellulose in packaging: Advances in barrier layer technologies. Ind. Crops Prod. 95, 574–582 (2017).

    CAS 
    Article 

    Google Scholar 

  • Leite, L. S. F., Ferreira, C. M., Corrêa, A. C., Moreira, F. K. V. & Mattoso, L. H. C. Scaled-up production of gelatin-cellulose nanocrystal bionanocomposite films by continuous casting. Carbohydr. Polym. 238, 116198 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martelli-Tosi, M. et al. Soybean straw nanocellulose produced by enzymatic or acid treatment as a reinforcing filler in soy protein isolate films. Carbohydr. Polym. 198, 61–68 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Qazanfarzadeh, Z. & Kadivar, M. Properties of whey protein isolate nanocomposite films reinforced with nanocellulose isolated from oat husk. Int. J. Biol. Macromol. 91, 1134–1140 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • González, A. & AlvarezIgarzabal, C. I. Nanocrystal-reinforced soy protein films and their application as active packaging. Food Hydrocoll. 43, 777–784 (2015).

    Article 
    CAS 

    Google Scholar 

  • Šešlija, S. et al. Pectin/carboxymethylcellulose films as a potential food packaging material. Macromol. Symp. 378, 1600163 (2018).

    Article 
    CAS 

    Google Scholar 

  • Moncada, B. J., Aristizábal, M. V. & Cardona, A. C. A. Design strategies for sustainable biorefineries. Adv. Biorefinery Eng. Food Supply Chain Waste Valoris 116, 122–134 (2016).

    Google Scholar 

  • Kaur, J., Sarma, A. K., Jha, M. K. & Gera, P. Valorisation of crude glycerol to value-added products: Perspectives of process technology, economics and environmental issues. Biotechnol. Rep. 27, e00487 (2020).

    Article 

    Google Scholar 

  • Rattanapoltee, P., Dujjanutat, P., Muanruksa, P. & Kaewkannetra, P. Biocircular platform for third generation biodiesel production: Batch/fed batch mixotrophic cultivations of microalgae using glycerol waste as a carbon source. Biochem. Eng. J. 175, 108128 (2021).

    CAS 
    Article 

    Google Scholar 

  • Li, X. et al. A novel strategy of feeding nitrate for cost-effective production of poly-γ-glutamic acid from crude glycerol by Bacillus licheniformis WX-02. Biochem. Eng. J. 176, 108156 (2021).

    CAS 
    Article 

    Google Scholar 

  • Meneses, D. P. et al. Esterase production by Aureobasidium pullulans URM 7059 in stirred tank and airlift bioreactors using residual biodiesel glycerol as substrate. Biochem. Eng. J. 168, 107954 (2021).

    CAS 
    Article 

    Google Scholar 

  • International Energy Agency. Global biofuel production in 2019 and forecast to 2025. IEA https://www.iea.org/data-and-statistics/charts/global-biofuel-production-in-2019-and-forecast-to-2025 (2021).

  • Tsouko, E., Maina, S., Ladakis, D., Kookos, I. K. & Koutinas, A. Integrated biorefinery development for the extraction of value-added components and bacterial cellulose production from orange peel waste streams. Renew. Energy 160, 944–954 (2020).

    CAS 
    Article 

    Google Scholar 

  • Kim, Y. et al. Self-assembly of bio-cellulose nanofibrils through intermediate phase in a cell-free enzyme system. Biochem. Eng. J. 142, 135–144 (2019).

    CAS 
    Article 

    Google Scholar 

  • Yan, H. et al. Synthesis of bacterial cellulose and bacterial cellulose nanocrystals for their applications in the stabilization of olive oil pickering emulsion. Food Hydrocoll. 72, 127–135 (2017).

    CAS 
    Article 

    Google Scholar 

  • Rollini, M. et al. From cheese whey permeate to Sakacin-A/bacterial cellulose nanocrystal conjugates for antimicrobial food packaging applications: A circular economy case study. Sci. Rep. 10, 21358 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 
    ADS 

    Google Scholar 

  • Vasconcelos, N. F. et al. Bacterial cellulose nanocrystals produced under different hydrolysis conditions: Properties and morphological features. Carbohydr. Polym. 155, 425–431 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Klemm, D. et al. Nanocelluloses: A new family of nature-based materials. Angew. Chem. Int. Ed. 50, 5438–5466 (2011).

    CAS 
    Article 

    Google Scholar 

  • Kian, L. K., Jawaid, M., Ariffin, H. & Karim, Z. Isolation and characterization of nanocrystalline cellulose from roselle-derived microcrystalline cellulose. Int. J. Biol. Macromol. 114, 54–63 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Cui, S., Zhang, S., Ge, S., Xiong, L. & Sun, Q. Green preparation and characterization of size-controlled nanocrystalline cellulose via ultrasonic-assisted enzymatic hydrolysis. Ind. Crops Prod. 83, 346–352 (2016).

    CAS 
    Article 

    Google Scholar 

  • Lee, C. M., Gu, J., Kafle, K., Catchmark, J. & Kim, S. H. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density. Carbohydr. Polym. 133, 270–276 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Martínez-Sanz, M., Lopez-Rubio, A. & Lagaron, J. M. Optimization of the nanofabrication by acid hydrolysis of bacterial cellulose nanowhiskers. Carbohydr. Polym. 85, 228–236 (2011).

    Article 
    CAS 

    Google Scholar 

  • García-Ramón, J. A. et al. Morphological, barrier, and mechanical properties of banana starch films reinforced with cellulose nanoparticles from plantain rachis. Int. J. Biol. Macromol. 187, 35–42 (2021).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Mondragon, G., Peña-Rodriguez, C., González, A., Eceiza, A. & Arbelaiz, A. Bionanocomposites based on gelatin matrix and nanocellulose. Eur. Polym. J. 62, 1–9 (2015).

    CAS 
    Article 

    Google Scholar 

  • Acquah, C., Zhang, Y., Dubé, M. A. & Udenigwe, C. C. Formation and characterization of protein-based films from yellow pea (Pisum sativum) protein isolate and concentrate for edible applications. Curr. Res. Food Sci. 2, 61–69 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Andritsou, V. et al. Synthesis and characterization of bacterial cellulose from citrus-based sustainable resources. ACS Omega 3, 10365–10373 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Han, Y., Yu, M. & Wang, L. Soy protein isolate nanocomposites reinforced with nanocellulose isolated from licorice residue: Water sensitivity and mechanical strength. Ind. Crops Prod. 117, 252–259 (2018).

    CAS 
    Article 

    Google Scholar 

  • Kang, H. et al. High-performance and fully renewable soy protein isolate-based film from microcrystalline cellulose via bio-inspired poly(dopamine) surface modification. ACS Sustain. Chem. Eng. 4, 4354–4360 (2016).

    CAS 
    Article 

    Google Scholar 

  • Li, C. et al. Mechanical and thermal properties of microcrystalline cellulose-reinforced soy protein isolate–gelatin eco-friendly films. RSC Adv. 5, 56518–56525 (2015).

    CAS 
    Article 
    ADS 

    Google Scholar 

  • George, J. & Siddaramaiah. High performance edible nanocomposite films containing bacterial cellulose nanocrystals. Carbohydr. Polym. 87, 2031–2037 (2012).

  • Salgado, P. R., Molina Ortiz, S. E., Petruccelli, S. & Mauri, A. N. Biodegradable sunflower protein films naturally activated with antioxidant compounds. Food Hydrocoll. 24, 525–533 (2010).

    CAS 
    Article 

    Google Scholar 

  • Nam, J. et al. Effect of cross-linkable bacterial cellulose nanocrystals on the physicochemical properties of silk sericin films. Polym. Test. 97, 107161 (2021).

    CAS 
    Article 

    Google Scholar 

  • Bilck, A. P., Grossmann, M. V. E. & Yamashita, F. Biodegradable mulch films for strawberry production. Polym. Test. 29, 471–476 (2010).

    CAS 
    Article 

    Google Scholar 

  • García, J. M., Medina, R. J. & Olías, J. M. Quality of strawberries automatically packed in different plastic films. J. Food Sci. 63, 1037–1041 (1998).

    Article 

    Google Scholar 

  • Giuggioli, N. R., Girgenti, V., Briano, R. & Peano, C. Sustainable supply-chain: Evolution of the quality characteristics of strawberries stored in green film packaging. CyTA J. Food 15, 211–219 (2017).

    CAS 
    Article 

    Google Scholar 

  • Robinson, J. E., Browne, K. M. & Burton, W. G. Storage characteristics of some vegetables and soft fruits. Ann. Appl. Biol. 81, 399–408 (1975).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Maringgal, B., Hashim, N., Mohamed Amin Tawakkal, I. S. & Muda Mohamed, M. T. Recent advance in edible coating and its effect on fresh/fresh-cut fruits quality. Trends Food Sci. Technol. 96, 253–267 (2020).

    CAS 
    Article 

    Google Scholar 

  • Duarte-Molina, F., Gómez, P. L., Castro, M. A. & Alzamora, S. M. Storage quality of strawberry fruit treated by pulsed light: Fungal decay, water loss and mechanical properties. Innov. Food Sci. Emerg. Technol. 34, 267–274 (2016).

    CAS 
    Article 

    Google Scholar 

  • Khodaei, D., Hamidi-Esfahani, Z. & Rahmati, E. Effect of edible coatings on the shelf-life of fresh strawberries: A comparative study using TOPSIS-Shannon entropy method. NFS J. 23, 17–23 (2021).

    Article 

    Google Scholar 

  • Del Nobile, M. A., Baiano, A., Benedetto, A. & Massignan, L. Respiration rate of minimally processed lettuce as affected by packaging. J. Food Eng. 74, 60–69 (2006).

    Article 

    Google Scholar 

  • Ishikawa, Y. & Hirata, T. Color change model for broccoli packed in polymeric films. Trans. ASAE 44, 923 (2001).

    Article 

    Google Scholar 

  • Giampieri, F. et al. The strawberry: Composition, nutritional quality, and impact on human health. Nutrition 28, 9–19 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pott, D. M., Vallarino, J. G., Osorio, S. & Amaya, I. Fruit ripening and QTL for fruit quality in the octoploid strawberry. In The Genomes of Rosaceous Berries and Their Wild Relatives (eds Hytönen, T. et al.) 95–113 (Springer International Publishing, 2018). https://doi.org/10.1007/978-3-319-76020-9_8.

    Chapter 

    Google Scholar 

  • Hwang, H., Kim, Y.-J. & Shin, Y. Influence of ripening stage and cultivar on physicochemical properties, sugar and organic acid profiles, and antioxidant compositions of strawberries. Food Sci. Biotechnol. 28, 1659–1667 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Paniagua, A. C., East, A. R., Hindmarsh, J. P. & Heyes, J. A. Moisture loss is the major cause of firmness change during postharvest storage of blueberry. Postharvest Biol. Technol. 79, 13–19 (2013).

    Article 

    Google Scholar 

  • Posé, S., Morris, V. J., Kirby, A. R., Quesada, M. A. & Mercado, J. A. Fruit softening and pectin disassembly: An overview of nanostructural pectin modifications assessed by atomic force microscopy. Ann. Bot. 114, 1375–1383 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Shahi, N., Min, B. & Bonsi, E. Microbial decontamination of fresh produce (strawberry) using washing solutions. J. Food Res. 4, p128 (2015).

    Article 

    Google Scholar 

  • Papagiannopoulos, A. & Vlassi, E. Stimuli-responsive nanoparticles by thermal treatment of bovine serum albumin inside its complexes with chondroitin sulfate. Food Hydrocoll. 87, 602–610 (2019).

    CAS 
    Article 

    Google Scholar 

  • Doebelin, N. & Kleeberg, R. Profex: A graphical user interface for the Rietveld refinement program BGMN. J. Appl. Crystallogr. 48, 1573–1580 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Nara, S. & Komiya, T. Studies on the relationship between water-satured state and crystallinity by the diffraction method for moistened potato starch. Starch Stärke 35, 407–410 (1983).

    CAS 
    Article 

    Google Scholar 

  • ISO. ISO 527-3:2018, Plastics—Determination of tensile properties—Part 3: Test conditions for films and sheets. ISO https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/07/03/70307.html (2018).

  • ASTM. ASTM E96-95, Standard Test Method for Water Vapor Transmission of Materials. ASTM INTERNATIONAL https://www.astm.org/DATABASE.CART/HISTORICAL/E96-95.htm (2017).

  • Zhou, X. et al. Biodegradable sandwich-architectured films derived from pea starch and polylactic acid with enhanced shelf-life for fruit preservation. Carbohydr. Polym. 251, 117117 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Sangsuwan, J., Pongsapakworawat, T., Bangmo, P. & Sutthasupa, S. Effect of chitosan beads incorporated with lavender or red thyme essential oils in inhibiting Botrytis cinerea and their application in strawberry packaging system. LWT 74, 14–20 (2016).

    CAS 
    Article 

    Google Scholar 

  • Lan, W., Zhang, R., Ahmed, S., Qin, W. & Liu, Y. Effects of various antimicrobial polyvinyl alcohol/tea polyphenol composite films on the shelf life of packaged strawberries. LWT 113, 108297 (2019).

    CAS 
    Article 

    Google Scholar 

  • Guerreiro, A. C., Gago, C. M. L., Faleiro, M. L., Miguel, M. G. C. & Antunes, M. D. C. The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biol. Technol. 110, 51–60 (2015).

    CAS 
    Article 

    Google Scholar 

  • Baranyi, J. & Roberts, T. A. A dynamic approach to predicting bacterial growth in food. Spec. Issue Predict. Model. 23, 277–294 (1994).

    CAS 

    Google Scholar 

  • Lie, S. The Ebc-Ninhydrin method for determination of free alpha amino nitrogen. J. Inst. Brew. 79, 37–41 (1973).

    CAS 
    Article 

    Google Scholar 

  • Source link