Kumar, A. et al. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere 268, 128855. https://doi.org/10.1016/j.chemosphere.2020.128855 (2021).
Google Scholar
Hui, C. Y., Guo, Y., Liu, L. & Yi, J. Recent advances in bacterial biosensing and bioremediation of cadmium pollution: A mini-review. World J. Microbiol. Biotechnol. 38, 9. https://doi.org/10.1007/s11274-021-03198-w (2021).
Google Scholar
Gupta, N., Renugopalakrishnan, V., Liepmann, D., Paulmurugan, R. & Malhotra, B. D. Cell-based biosensors: Recent trends, challenges and future perspectives. Biosens. Bioelectron. 141, 111435. https://doi.org/10.1016/j.bios.2019.111435 (2019).
Google Scholar
Rittle, J., Field, M. J., Green, M. T. & Tezcan, F. A. An efficient, step-economical strategy for the design of functional metalloproteins. Nat. Chem. 11, 434–441. https://doi.org/10.1038/s41557-019-0218-9 (2019).
Google Scholar
Guo, Y. et al. Development of cadmium multiple-signal biosensing and bioadsorption systems based on artificial cad operons. Front. Bioeng. Biotechnol. 9, 585617. https://doi.org/10.3389/fbioe.2021.585617 (2021).
Google Scholar
Kang, Y., Lee, W., Jang, G., Kim, B. G. & Yoon, Y. Modulating the sensing properties of Escherichia coli-based bioreporters for cadmium and mercury. Appl. Microbiol. Biotechnol. 102, 4863–4872. https://doi.org/10.1007/s00253-018-8960-2 (2018).
Google Scholar
Kumar, S., Verma, N. & Singh, A. Development of cadmium specific recombinant biosensor and its application in milk samples. Sens. Actuators B Chem. 240, 248–254 (2017).
Google Scholar
Bereza-Malcolm, L., Aracic, S., Kannan, R., Mann, G. & Franks, A. E. Functional characterization of Gram-negative bacteria from different genera as multiplex cadmium biosensors. Biosens. Bioelectron. 94, 380–387. https://doi.org/10.1016/j.bios.2017.03.029 (2017).
Google Scholar
Kim, H. J. et al. Development of a highly specific and sensitive cadmium and lead microbial biosensor using synthetic CadC-T7 genetic circuitry. Biosens. Bioelectron. 79, 701–708. https://doi.org/10.1016/j.bios.2015.12.101 (2016).
Google Scholar
Wang, D. et al. Visual detection of Hg(2+) by manipulation of pyocyanin biosynthesis through the Hg(2+)-dependent transcriptional activator MerR in microbial cells. J. Biosci. Bioeng. 129, 223–228. https://doi.org/10.1016/j.jbiosc.2019.08.005 (2020).
Google Scholar
Hui, C. Y. et al. Indigoidine biosynthesis triggered by the heavy metal-responsive transcription regulator: A visual whole-cell biosensor. Appl. Microbiol. Biotechnol. 105, 6087–6102. https://doi.org/10.1007/s00253-021-11441-5 (2021).
Google Scholar
Joe, M. H. et al. Pigment-based whole-cell biosensor system for cadmium detection using genetically engineered Deinococcus radiodurans. Bioprocess Biosyst. Eng. 35, 265–272. https://doi.org/10.1007/s00449-011-0610-3 (2012).
Google Scholar
Hui, C. Y. et al. A tailored indigoidine-based whole-cell biosensor for detecting toxic cadmium in environmental water samples. Environ. Technol. Innov. https://doi.org/10.1016/j.eti.2022.102511 (2022).
Google Scholar
Cauz, A. C. G. et al. Violacein targets the cytoplasmic membrane of bacteria. ACS Infect. Dis. 5, 539–549. https://doi.org/10.1021/acsinfecdis.8b00245 (2019).
Google Scholar
Cress, B. F. et al. Rapid generation of CRISPR/dCas9-regulated, orthogonally repressible hybrid T7-lac promoters for modular, tuneable control of metabolic pathway fluxes in Escherichia coli. Nucleic Acids Res. 44, 4472–4485. https://doi.org/10.1093/nar/gkw231 (2016).
Google Scholar
Tong, Y., Zhou, J., Zhang, L. & Xu, P. A golden-gate based cloning toolkit to build violacein pathway libraries in Yarrowia lipolytica. ACS Synth. Biol. 10, 115–124. https://doi.org/10.1021/acssynbio.0c00469 (2021).
Google Scholar
Yang, D., Park, S. Y. & Lee, S. Y. Production of rainbow colorants by metabolically engineered Escherichia coli. Adv. Sci. 8, e2100743. https://doi.org/10.1002/advs.202100743 (2021).
Google Scholar
McNerney, M. P., Michel, C. L., Kishore, K., Standeven, J. & Styczynski, M. P. Dynamic and tunable metabolite control for robust minimal-equipment assessment of serum zinc. Nat. Commun. 10, 5514. https://doi.org/10.1038/s41467-019-13454-1 (2019).
Google Scholar
Guo, Y., Hui, C. Y., Liu, L., Chen, M. P. & Huang, H. Y. Development of a bioavailable Hg(II) sensing system based on MerR-regulated visual pigment biosynthesis. Sci. Rep. 11, 13516. https://doi.org/10.1038/s41598-021-92878-6 (2021).
Google Scholar
Hui, C. Y. et al. Genetic control of violacein biosynthesis to enable a pigment-based whole-cell lead biosensor. RSC Adv. 10, 28106–28113. https://doi.org/10.1039/D0RA04815A (2020).
Google Scholar
Hui, C. Y. et al. Detection of bioavailable cadmium by double-color fluorescence based on a dual-sensing bioreporter system. Front. Microbiol. 12, 696195. https://doi.org/10.3389/fmicb.2021.696195 (2021).
Google Scholar
Park, H., Park, S., Yang, Y. H. & Choi, K. Y. Microbial synthesis of violacein pigment and its potential applications. Crit. Rev. Biotechnol. 41, 879–901. https://doi.org/10.1080/07388551.2021.1892579 (2021).
Google Scholar
Lee, S. W., Glickmann, E. & Cooksey, D. A. Chromosomal locus for cadmium resistance in Pseudomonas putida consisting of a cadmium-transporting ATPase and a MerR family response regulator. Appl. Environ. Microbiol. 67, 1437–1444. https://doi.org/10.1128/AEM.67.4.1437-1444.2001 (2001).
Google Scholar
Hui, C. Y., Guo, Y., Li, H., Chen, Y. T., & Yi, J. Differential detection of bioavailable mercury and cadmium based on a robust dual-sensing bacterial biosensor. Front. Microbiol. 13, 846524. https://doi.org/10.3389/fmicb.2022.846524 (2022).
Google Scholar
Jung, J. & Lee, S. J. Biochemical and biodiversity insights into heavy metal ion-responsive transcription regulators for synthetic biological heavy metal sensors. J. Microbiol. Biotechnol. 29, 1522–1542. https://doi.org/10.4014/jmb.1908.08002 (2019).
Google Scholar
Waldron, K. J., Rutherford, J. C., Ford, D. & Robinson, N. J. Metalloproteins and metal sensing. Nature 460, 823–830. https://doi.org/10.1038/nature08300 (2009).
Google Scholar
Tao, H. C., Peng, Z. W., Li, P. S., Yu, T. A. & Su, J. Optimizing cadmium and mercury specificity of CadR-based E. coli biosensors by redesign of CadR. Biotechnol. Lett. 35, 1253–1258. https://doi.org/10.1007/s10529-013-1216-4 (2013).
Google Scholar
Zhang, N. X. et al. Versatile artificial mer operons in Escherichia coli towards whole cell biosensing and adsorption of mercury. PLoS ONE 16, e0252190. https://doi.org/10.1371/journal.pone.0252190 (2021).
Google Scholar
Wu, C. H., Le, D., Mulchandani, A. & Chen, W. Optimization of a whole-cell cadmium sensor with a toggle gene circuit. Biotechnol. Prog. 25, 898–903. https://doi.org/10.1002/btpr.203 (2009).
Google Scholar
Jia, X., Liu, T., Ma, Y. & Wu, K. Construction of cadmium whole-cell biosensors and circuit amplification. Appl. Microbiol. Biotechnol. 105, 5689–5699. https://doi.org/10.1007/s00253-021-11403-x (2021).
Google Scholar
Riether, K. B., Dollard, M. A. & Billard, P. Assessment of heavy metal bioavailability using Escherichia coli zntAp::lux and copAp::lux-based biosensors. Appl. Microbiol. Biotechnol. 57, 712–716. https://doi.org/10.1007/s00253-001-0852-0 (2001).
Google Scholar
Ivask, A. et al. Recombinant luminescent bacterial sensors for the measurement of bioavailability of cadmium and lead in soils polluted by metal smelters. Chemosphere 55, 147–156. https://doi.org/10.1016/j.chemosphere.2003.10.064 (2004).
Google Scholar
Biran, I., Babai, R., Levcov, K., Rishpon, J. & Ron, E. Z. Online and in situ monitoring of environmental pollutants: Electrochemical biosensing of cadmium. Environ. Microbiol. 2, 285–290. https://doi.org/10.1046/j.1462-2920.2000.00103.x (2000).
Google Scholar
Gireesh-Babu, P. & Chaudhari, A. Development of a broad-spectrum fluorescent heavy metal bacterial biosensor. Mol. Biol. Rep. 39, 11225–11229. https://doi.org/10.1007/s11033-012-2033-x (2012).
Google Scholar
Yoon, Y. et al. Use of tunable whole-cell bioreporters to assess bioavailable cadmium and remediation performance in soils. PLoS ONE 11, e0154506. https://doi.org/10.1371/journal.pone.0154506 (2016).
Google Scholar
Wang, B., Barahona, M. & Buck, M. A modular cell-based biosensor using engineered genetic logic circuits to detect and integrate multiple environmental signals. Biosens. Bioelectron. 40, 368–376. https://doi.org/10.1016/j.bios.2012.08.011 (2013).
Google Scholar
Yoon, Y. et al. Simultaneous detection of bioavailable arsenic and cadmium in contaminated soils using dual-sensing bioreporters. Appl. Microbiol. Biotechnol. 100, 3713–3722. https://doi.org/10.1007/s00253-016-7338-6 (2016).
Google Scholar
Grawe, A. et al. A paper-based, cell-free biosensor system for the detection of heavy metals and date rape drugs. PLoS ONE 14, e0210940. https://doi.org/10.1371/journal.pone.0210940 (2019).
Google Scholar
Allafchian, A. R., Farajmand, B. & Koupaei, A. J. A paper-based analytical device based on combination of thin film microextraction and reflection scanometry for sensitive colorimetric determination of Ni(II) in aqueous matrix. Bull. Environ. Contam. Toxicol. 100, 529–535. https://doi.org/10.1007/s00128-018-2297-5 (2018).
Google Scholar
Hui, C. et al. Surface display of PbrR on Escherichia coli and evaluation of the bioavailability of lead associated with engineered cells in mice. Sci. Rep. 8, 5685. https://doi.org/10.1038/s41598-018-24134-3 (2018).
Google Scholar
Hui, C. Y., Guo, Y., Yang, X. Q., Zhang, W. & Huang, X. Q. Surface display of metal binding domain derived from PbrR on Escherichia coli specifically increases lead(II) adsorption. Biotech. Lett. 40, 837–845. https://doi.org/10.1007/s10529-018-2533-4 (2018).
Google Scholar

