Preloader

Nanodelivery of nucleic acids | Nature Reviews Methods Primers

  • Alvarez, E. M. et al. The global burden of adolescent and young adult cancer in 2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Oncol. 23, 27–52 (2022).

    Google Scholar 

  • Global Burden of Disease 2019 Cancer Collaboration. Cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life years for 29 cancer groups from 2010 to 2019: a systematic analysis for the Global Burden of Disease Study 2019. JAMA Oncol. https://doi.org/10.1001/jamaoncol.2021.6987 (2021).

    Article 

    Google Scholar 

  • Vos, T. et al. Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396, 1204–1222 (2020).

    Google Scholar 

  • Roth, A. G. et al. Global burden of cardiovascular diseases and risk factors, 1990–2019. J. Am. Coll. Cardiol. 76, 2982–3021 (2020).

    Google Scholar 

  • Forouzanfar, M. H. et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 388, 1659–1724 (2016).

    Google Scholar 

  • Frank, T. D. et al. Global, regional, and national incidence, prevalence, and mortality of HIV, 1980–2017, and forecasts to 2030, for 195 countries and territories: a systematic analysis for the Global Burden of Diseases, Injuries, and Risk Factors Study 2017. Lancet HIV 6, e831–e859 (2019).

    Google Scholar 

  • Watson, D. J. The human genome project: past, present, and future. Science 248, 44–49 (1990).

    ADS 

    Google Scholar 

  • Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806–811 (1998).

    ADS 

    Google Scholar 

  • Martin, J. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    ADS 

    Google Scholar 

  • Shahryari, A. et al. Development and clinical translation of approved gene therapy products for genetic disorders. Front. Genet. 10, 868 (2019).

    Google Scholar 

  • Polack, F. P. et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N. Engl. J. Med. 383, 2603–2615 (2020).

    Google Scholar 

  • Gillmore, J. D. et al. CRISPR–Cas9 in vivo gene editing for transthyretin amyloidosis. N. Engl. J. Med. 385, 493–502 (2021).

    Google Scholar 

  • Ruan, G.-X. et al. CRISPR/Cas9-mediated genome editing as a therapeutic approach for Leber congenital amaurosis 10. Mol. Ther. 25, 331–341 (2017).

    Google Scholar 

  • McKay, P. F. et al. Self-amplifying RNA SARS-CoV-2 lipid nanoparticle vaccine candidate induces high neutralizing antibody titers in mice. Nat. Commun. 11, 3523 (2020).

    ADS 

    Google Scholar 

  • Wesselhoeft, R. A., Kowalski, P. S. & Anderson, D. G. Engineering circular RNA for potent and stable translation in eukaryotic cells. Nat. Commun. 9, 2629 (2018).

    ADS 

    Google Scholar 

  • Dangouloff, T. & Servais, L. Clinical evidence supporting early treatment of patients with spinal muscular atrophy: current perspectives. Ther. Clin. Risk Manag. 15, 1153–1161 (2019).

    Google Scholar 

  • Kay, M. A. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316–328 (2011).

    Google Scholar 

  • Urits, I. et al. A review of patisiran (Onpattro®) for the treatment of polyneuropathy in people with hereditary transthyretin amyloidosis. Neurol. Ther. 9, 301–315 (2020).

    Google Scholar 

  • Dunbar, E. C. et al. Gene therapy comes of age. Science 359, eaan4672 (2018).

    Google Scholar 

  • Deverman, B. E., Ravina, B. M., Bankiewicz, K. S., Paul, S. M. & Sah, D. W. Y. Gene therapy for neurological disorders: progress and prospects. Nat. Rev. Drug Discov. 17, 641–659 (2018).

    Google Scholar 

  • Jones, C. H., Chen, C.-K., Ravikrishnan, A., Rane, S. & Pfeifer, B. A. Overcoming nonviral gene delivery barriers: perspective and future. Mol. Pharm. 10, 4082–4098 (2013).

    Google Scholar 

  • Malaviya, M. & Shiroya, M. Systemic gene delivery using lipid envelope systems and its potential in overcoming challenges. Int. J. Pharm. Drug Anal. 9, 46–55 (2021).

    Google Scholar 

  • Uchida, S. & Kataoka, K. Design concepts of polyplex micelles for in vivo therapeutic delivery of plasmid DNA and messenger RNA. J. Biomed. Mater. Res. A 107, 978–990 (2019).

    Google Scholar 

  • Sung, Y. K. & Kim, S. W. Recent advances in the development of gene delivery systems. Biomater. Res. 23, 8 (2019).

    Google Scholar 

  • Patil, S. D., Rhodes, D. G. & Burgess, D. J. DNA-based therapeutics and DNA delivery systems: a comprehensive review. AAPS J. 7, E61–E77 (2005).

    Google Scholar 

  • Bulcha, J. T., Wang, Y., Ma, H., Tai, P. W. L. & Gao, G. Viral vector platforms within the gene therapy landscape. Signal. Transduct. Target. Ther. 6, 53 (2021).

    Google Scholar 

  • Mancheño-Corvo, P. & Martín-Duque, P. Viral gene therapy. Clin. Transl. Oncol. 8, 858–867 (2006).

    Google Scholar 

  • Selot, R. S., Jayandharan, G. R. & Hareendran, S. Developing immunologically inert adeno-associated virus (AAV) vectors for gene therapy: possibilities and limitations. Curr. Pharm. Biotechnol. 14, 1072–1082 (2013).

    Google Scholar 

  • Iyer, A. K., Duan, Z. & Amiji, M. M. Nanodelivery systems for nucleic acid therapeutics in drug resistant tumors. Mol. Pharm. 11, 2511–2526 (2014).

    Google Scholar 

  • Rajala, A. et al. Nanoparticle-assisted targeted delivery of eye-specific genes to eyes significantly improves the vision of blind mice in vivo. Nano Lett. 14, 5257–5263 (2014).

    ADS 

    Google Scholar 

  • Ren, T., Song, Y. K., Zhang, G. & Liu, D. Structural basis of DOTMA for its high intravenous transfection activity in mouse. Gene Ther. 7, 764–768 (2000).

    Google Scholar 

  • Wahane, A. et al. Role of lipid-based and polymer-based non-viral vectors in nucleic acid delivery for next-generation gene therapy. Molecules 25, 2866 (2020).

    Google Scholar 

  • Maugeri, M. et al. Linkage between endosomal escape of LNP-mRNA and loading into EVs for transport to other cells. Nat. Commun. 10, 4333 (2019).

    ADS 

    Google Scholar 

  • Witzigmann, D. et al. Lipid nanoparticle technology for therapeutic gene regulation in the liver. Adv. Drug Deliv. Rev. 159, 344–363 (2020).

    Google Scholar 

  • Piotrowski-Daspit, A. S., Kauffman, A. C., Bracaglia, L. G. & Saltzman, W. M. Polymeric vehicles for nucleic acid delivery. Adv. Drug Deliv. Rev. 156, 119–132 (2020).

    Google Scholar 

  • Rai, R., Alwani, S. & Badea, I. Polymeric nanoparticles in gene therapy: new avenues of design and optimization for delivery applications. Polymers 11, 745 (2019).

    Google Scholar 

  • Bertschinger, M. et al. Disassembly of polyethylenimine-DNA particles in vitro: implications for polyethylenimine-mediated DNA delivery. J. Control. Rel. 116, 96–104 (2006).

    Google Scholar 

  • Wightman, L. et al. Different behavior of branched and linear polyethylenimine for gene delivery in vitro and in vivo. J. Gene Med. 3, 362–372 (2001).

    Google Scholar 

  • Hoyer, J. & Neundorf, I. Peptide vectors for the nonviral delivery of nucleic acids. Acc. Chem. Res. 45, 1048–1056 (2012).

    Google Scholar 

  • Luther, D. C. et al. Delivery of drugs, proteins, and nucleic acids using inorganic nanoparticles. Adv. Drug Deliv. Rev. 156, 188–213 (2020).

    Google Scholar 

  • Pranatharthiharan, S., Patel, M. D., D’Souza, A. A. & Devarajan, P. V. Inorganic nanovectors for nucleic acid delivery. Drug Deliv. Transl. Res. 3, 446–470 (2013).

    Google Scholar 

  • Mora-Raimundo, P., Lozano, D., Manzano, M. & Vallet-Regí, M. Nanoparticles to knockdown osteoporosis-related gene and promote osteogenic marker expression for osteoporosis treatment. ACS Nano 13, 5451–5464 (2019).

    Google Scholar 

  • Hadinoto, K., Sundaresan, A. & Cheow, W. S. Lipid–polymer hybrid nanoparticles as a new generation therapeutic delivery platform: a review. Eur. J. Pharm. Biopharm. 85, 427–443 (2013).

    Google Scholar 

  • Mitchell, M. J. et al. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 20, 101–124 (2021).

    Google Scholar 

  • Rauch, S. et al. mRNA-based SARS-CoV-2 vaccine candidate CVnCoV induces high levels of virus-neutralising antibodies and mediates protection in rodents. NPJ Vaccines 6, 57 (2021).

    Google Scholar 

  • Gebre, M. S. et al. Optimization of non-coding regions improves protective efficacy of an mRNA SARS-CoV-2 vaccine in nonhuman primates. Preprint at bioRxiv https://doi.org/10.1101/2021.08.13.456316 (2021).

    Article 

    Google Scholar 

  • Adir, O. et al. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 32, 1901989 (2020).

    Google Scholar 

  • Hou, X., Zaks, T., Langer, R. & Dong, Y. Lipid nanoparticles for mRNA delivery. Nat. Rev. Mater. 6, 1078–1094 (2021).

    ADS 

    Google Scholar 

  • Akinc, A. et al. The Onpattro story and the clinical translation of nanomedicines containing nucleic acid-based drugs. Nat. Nanotechnol. 14, 1084–1087 (2019).

    ADS 

    Google Scholar 

  • [No authors listed] Let’s talk about lipid nanoparticles. Nat. Rev. Mater. 6, 99 (2021).

    Google Scholar 

  • Mukalel, A. J., Riley, R. S., Zhang, R. & Mitchell, M. J. Nanoparticles for nucleic acid delivery: applications in cancer immunotherapy. Cancer Lett. 458, 102–112 (2019).

    Google Scholar 

  • Nagayasu, A., Uchiyama, K. & Kiwada, H. The size of liposomes: a factor which affects their targeting efficiency to tumors and therapeutic activity of liposomal antitumor drugs. Adv. Drug Deliv. Rev. 40, 75–87 (1999).

    Google Scholar 

  • Li, W., Huang, Z., MacKay, J. A., Grube, S. & Szoka, F. C. Jr Low-pH-sensitive poly(ethylene glycol) (PEG)-stabilized plasmid nanolipoparticles: effects of PEG chain length, lipid composition and assembly conditions on gene delivery. J. Gene Med. 7, 67–79 (2005).

    Google Scholar 

  • Nordling-David, M. M. & Golomb, G. Gene delivery by liposomes. Isr. J. Chem. 53, 737–747 (2013).

    Google Scholar 

  • Han, X. et al. An ionizable lipid toolbox for RNA delivery. Nat. Commun. 12, 7233 (2021).

    ADS 

    Google Scholar 

  • Kulkarni, J. A., Witzigmann, D., Leung, J., Tam, Y. Y. C. & Cullis, P. R. On the role of helper lipids in lipid nanoparticle formulations of siRNA. Nanoscale 11, 21733–21739 (2019).

    Google Scholar 

  • Ambegia, E. et al. Stabilized plasmid–lipid particles containing PEG-diacylglycerols exhibit extended circulation lifetimes and tumor selective gene expression. Biochim. Biophys. Act 1669, 155–163 (2005).

    Google Scholar 

  • Dai, Q., Walkey, C. & Chan, W. C. W. Polyethylene glycol backfilling mitigates the negative impact of the protein corona on nanoparticle cell targeting. Angew. Chem. Int. Ed. 53, 5093–5096 (2014).

    Google Scholar 

  • Belliveau, N. M. et al. Microfluidic synthesis of highly potent limit-size lipid nanoparticles for in vivo delivery of siRNA. Mol. Ther. Nucleic Acids 1, e37 (2012).

    Google Scholar 

  • Chen, S. et al. Influence of particle size on the in vivo potency of lipid nanoparticle formulations of siRNA. J. Control. Rel. 235, 236–244 (2016).

    ADS 

    Google Scholar 

  • Han, X., Mitchell, M. J. & Nie, G. Nanomaterials for therapeutic RNA delivery. Matter 3, 1948–1975 (2020).

    Google Scholar 

  • Kowalski, P. S., Rudra, A., Miao, L. & Anderson, D. G. Delivering the messenger: advances in technologies for therapeutic mRNA delivery. Mol. Ther. 27, 710–728 (2019).

    Google Scholar 

  • Kauffman, K. J. et al. Optimization of lipid nanoparticle formulations for mRNA delivery in vivo with fractional factorial and definitive screening designs. Nano Lett. 15, 7300–7306 (2015).

    ADS 

    Google Scholar 

  • Ramaswamy, S. et al. Systemic delivery of factor IX messenger RNA for protein replacement therapy. Proc. Natl Acad. Sci. USA 114, E1941–E1950 (2017).

    Google Scholar 

  • Byrne, J. D., Betancourt, T. & Brannon-Peppas, L. Active targeting schemes for nanoparticle systems in cancer therapeutics. Adv. Drug Deliv. Rev. 60, 1615–1626 (2008).

    Google Scholar 

  • Jahn, A., Vreeland, W. N., Gaitan, M. & Locascio, L. E. Controlled vesicle self-assembly in microfluidic channels with hydrodynamic focusing. J. Am. Chem. Soc. 126, 2674–2675 (2004).

    Google Scholar 

  • Zhigaltsev, I. V. et al. Bottom-up design and synthesis of limit size lipid nanoparticle systems with aqueous and triglyceride cores using millisecond microfluidic mixing. Langmuir 28, 3633–3640 (2012).

    Google Scholar 

  • Roces, C. B. et al. Manufacturing considerations for the development of lipid nanoparticles using microfluidics. Pharmaceutics 12, 1095 (2020).

    Google Scholar 

  • Lächelt, U. & Wagner, E. Nucleic acid therapeutics using polyplexes: a journey of 50 years (and beyond). Chem. Rev. 115, 11043–11078 (2015).

    Google Scholar 

  • Discher, D. E. & Ahmed, F. Polymersomes. Annu. Rev. Biomed. Eng. 8, 323–341 (2006).

    Google Scholar 

  • Iqbal, S., Blenner, M., Alexander-Bryant, A. & Larsen, J. Polymersomes for therapeutic delivery of protein and nucleic acid macromolecules: from design to therapeutic applications. Biomacromolecules 21, 1327–1350 (2020).

    Google Scholar 

  • Pangburn, T. O., Georgiou, K., Bates, F. S. & Kokkoli, E. Targeted polymersome delivery of siRNA induces cell death of breast cancer cells dependent upon orai3 protein expression. Langmuir 28, 12816–12830 (2012).

    Google Scholar 

  • Konishcheva, E. V., Zhumaev, U. E. & Meier, W. P. PEO-b-PCL-b-PMOXA triblock copolymers: from synthesis to microscale polymersomes with asymmetric membrane. Macromolecules 50, 1512–1520 (2017).

    ADS 

    Google Scholar 

  • Li, S. et al. Biodegradable polymersomes with an ionizable membrane: facile preparation, superior protein loading, and endosomal pH-responsive protein release. Eur. J. Pharm. Biopharm. 82, 103–111 (2012).

    ADS 

    Google Scholar 

  • Walter, M. V. & Malkoch, M. Simplifying the synthesis of dendrimers: accelerated approaches. Chem. Soc. Rev. 41, 4593–4609 (2012).

    Google Scholar 

  • Conde, J., Oliva, N., Atilano, M., Song, H. S. & Artzi, N. Self-assembled RNA-triple-helix hydrogel scaffold for microRNA modulation in the tumour microenvironment. Nat. Mater. 15, 353–363 (2016).

    ADS 

    Google Scholar 

  • Palmerston Mendes, L., Pan, J. & Torchilin, V. P. Dendrimers as nanocarriers for nucleic acid and drug delivery in cancer therapy. Molecules 22, 1401 (2017).

    Google Scholar 

  • Pack, D. W., Hoffman, A. S., Pun, S. & Stayton, P. S. Design and development of polymers for gene delivery. Nat. Rev. Drug Discov. 4, 581–593 (2005).

    Google Scholar 

  • Lai, W.-F. & Wong, W.-T. Design of polymeric gene carriers for effective intracellular delivery. Trends Biotechnol. 36, 713–728 (2018).

    Google Scholar 

  • Arami, H., Khandhar, A., Liggitt, D. & Krishnan, K. M. In vivo delivery, pharmacokinetics, biodistribution and toxicity of iron oxide nanoparticles. Chem. Soc. Rev. 44, 8576–8607 (2015).

    Google Scholar 

  • Dobrovolskaia, M. A. & McNeil, S. E. Immunological properties of engineered nanomaterials. Nat. Nanotechnol. 2, 469–478 (2007).

    ADS 

    Google Scholar 

  • Soenen, S. J. et al. Cellular toxicity of inorganic nanoparticles: common aspects and guidelines for improved nanotoxicity evaluation. Nano Today 6, 446–465 (2011).

    Google Scholar 

  • Cutler, J. I., Auyeung, E. & Mirkin, C. A. Spherical nucleic acids. J. Am. Chem. Soc. 134, 1376–1391 (2012).

    Google Scholar 

  • Conde, J. et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi–peptide nanoparticles to tumor-associated macrophages and cancer cells. Adv. Funct. Mater. 25, 4183–4194 (2015).

    Google Scholar 

  • Conde, J., Oliva, N. & Artzi, N. Implantable hydrogel embedded dark-gold nanoswitch as a theranostic probe to sense and overcome cancer multidrug resistance. Proc. Natl Acad. Sci. USA 112, E1278–E1287 (2015).

    ADS 

    Google Scholar 

  • Gilam, A. et al. Local microRNA delivery targets Palladin and prevents metastatic breast cancer. Nat. Commun. 7, 12868 (2016).

    ADS 

    Google Scholar 

  • Bishop, C. J., Tzeng, S. Y. & Green, J. J. Degradable polymer-coated gold nanoparticles for co-delivery of DNA and siRNA. Acta Biomater. 11, 393–403 (2015).

    Google Scholar 

  • Donahue, N. D., Acar, H. & Wilhelm, S. Concepts of nanoparticle cellular uptake, intracellular trafficking, and kinetics in nanomedicine. Adv. Drug Deliv. Rev. 143, 68–96 (2019).

    Google Scholar 

  • Hak, S. et al. The effect of nanoparticle polyethylene glycol surface density on ligand-directed tumor targeting studied in vivo by dual modality imaging. ACS Nano 6, 5648–5658 (2012).

    Google Scholar 

  • Tang, S., Huang, X., Chen, X. & Zheng, N. Hollow mesoporous zirconia nanocapsules for drug delivery. Adv. Funct. Mater. 20, 2442–2447 (2010).

    Google Scholar 

  • Ahmadi, E., Dehghannejad, N., Hashemikia, S., Ghasemnejad, M. & Tabebordbar, H. Synthesis and surface modification of mesoporous silica nanoparticles and its application as carriers for sustained drug delivery. Drug Deliv. 21, 164–172 (2014).

    Google Scholar 

  • Li, J., Xue, S. & Mao, Z.-W. Nanoparticle delivery systems for siRNA-based therapeutics. J. Mater. Chem. B 4, 6620–6639 (2016).

    Google Scholar 

  • Jiang, S., Eltoukhy, A. A., Love, K. T., Langer, R. & Anderson, D. G. Lipidoid-coated iron oxide nanoparticles for efficient DNA and siRNA delivery. Nano Lett. 13, 1059–1064 (2013).

    ADS 

    Google Scholar 

  • Tavitian, B. et al. In vivo imaging of oligonucleotides with positron emission tomography. Nat. Med. 4, 467–471 (1998).

    Google Scholar 

  • Khorkova, O. & Wahlestedt, C. Oligonucleotide therapies for disorders of the nervous system. Nat. Biotechnol. 35, 249–263 (2017).

    Google Scholar 

  • Kanasty, R., Dorkin, J. R., Vegas, A. & Anderson, D. Delivery materials for siRNA therapeutics. Nat. Mater. 12, 967–977 (2013).

    ADS 

    Google Scholar 

  • Khvorova, A. & Watts, J. K. The chemical evolution of oligonucleotide therapies of clinical utility. Nat. Biotechnol. 35, 238–248 (2017).

    Google Scholar 

  • Dowdy, S. F. Overcoming cellular barriers for RNA therapeutics. Nat. Biotechnol. 35, 222–229 (2017).

    Google Scholar 

  • Sun, Y. et al. Enhancing the therapeutic delivery of oligonucleotides by chemical modification and nanoparticle encapsulation. Molecules 22, 1724 (2017).

    Google Scholar 

  • Sipa, K. et al. Effect of base modifications on structure, thermodynamic stability, and gene silencing activity of short interfering RNA. RNA 13, 1301–1316 (2007).

    Google Scholar 

  • Orlandini von Niessen, A. G. et al. Improving mRNA-based therapeutic gene delivery by expression-augmenting 3′ UTRs identified by cellular library screening. Mol. Ther. 27, 824–836 (2019).

    Google Scholar 

  • Holtkamp, S. et al. Modification of antigen-encoding RNA increases stability, translational efficacy, and T-cell stimulatory capacity of dendritic cells. Blood 108, 4009–4017 (2006).

    Google Scholar 

  • Jasinski, D. L., Li, H. & Guo, P. The effect of size and shape of RNA nanoparticles on biodistribution. Mol. Ther. 26, 784–792 (2018).

    Google Scholar 

  • Albanese, A., Tang, P. S. & Chan, W. C. W. The effect of nanoparticle size, shape, and surface chemistry on biological systems. Annu. Rev. Biomed. Eng. 14, 1–16 (2012).

    Google Scholar 

  • Buriak, J. M. Preface to the special issue on methods and protocols in materials chemistry. Chem. Mater. 29, 1–2 (2017).

    Google Scholar 

  • Behzadi, S. et al. Cellular uptake of nanoparticles: journey inside the cell. Chem. Soc. Rev. 46, 4218–4244 (2017).

    Google Scholar 

  • Hadjidemetriou, M. & Kostarelos, K. Evolution of the nanoparticle corona. Nat. Nanotechnol. 12, 288–290 (2017).

    ADS 

    Google Scholar 

  • Satzer, P., Svec, F., Sekot, G. & Jungbauer, A. Protein adsorption onto nanoparticles induces conformational changes: particle size dependency, kinetics, and mechanisms. Eng. Life Sci. 16, 238–246 (2016).

    Google Scholar 

  • Walkey, C. D., Olsen, J. B., Guo, H., Emili, A. & Chan, W. C. W. Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. J. Am. Chem. Soc. 134, 2139–2147 (2012).

    Google Scholar 

  • Glancy, D. et al. Characterizing the protein corona of sub-10 nm nanoparticles. J. Control. Rel. 304, 102–110 (2019).

    Google Scholar 

  • Faria, M. et al. Minimum information reporting in bio–nano experimental literature. Nat. Nanotechnol. 13, 777–785 (2018).

    ADS 

    Google Scholar 

  • Modena, M. M., Rühle, B., Burg, T. P. & Wuttke, S. Nanoparticle characterization: what to measure? Adv. Mater. 31, 1901556 (2019).

    Google Scholar 

  • Varenne, F., Makky, A., Gaucher-Delmas, M., Violleau, F. & Vauthier, C. Multimodal dispersion of nanoparticles: a comprehensive evaluation of size distribution with 9 size measurement methods. Pharm. Res. 33, 1220–1234 (2016).

    Google Scholar 

  • Stetefeld, J., McKenna, S. A. & Patel, T. R. Dynamic light scattering: a practical guide and applications in biomedical sciences. Biophys. Rev. 8, 409–427 (2016).

    Google Scholar 

  • Shen, H. et al. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117, 7331–7376 (2017).

    Google Scholar 

  • Dahmen, U. et al. Background, status and future of the transmission electron aberration-corrected microscope project. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 367, 3795–3808 (2009).

    ADS 

    Google Scholar 

  • Skowron, S. T. et al. Chemical reactions of molecules promoted and simultaneously imaged by the electron beam in transmission electron microscopy. Acc. Chem. Res. 50, 1797–1807 (2017).

    Google Scholar 

  • Nakamura, E., Sommerdijk, N. A. J. M. & Zheng, H. Transmission electron microscopy for chemists. Acc. Chem. Res. 50, 1795–1796 (2017).

    Google Scholar 

  • Stewart, P. L. Cryo-electron microscopy and cryo-electron tomography of nanoparticles. WIREs Nanomed. Nanobiotechnol. 9, e1417 (2017).

    Google Scholar 

  • Mourdikoudis, S., Pallares, R. M. & Thanh, N. T. K. Characterization techniques for nanoparticles: comparison and complementarity upon studying nanoparticle properties. Nanoscale 10, 12871–12934 (2018).

    Google Scholar 

  • Rao, A. et al. Characterization of nanoparticles using atomic force microscopy. J. Phys. Conf. Ser. 61, 971–976 (2007).

    ADS 

    Google Scholar 

  • Glass, J. J. et al. Charge has a marked influence on hyperbranched polymer nanoparticle association in whole human blood. ACS Macro Lett. 6, 586–592 (2017).

    Google Scholar 

  • Salatin, S., Maleki Dizaj, S. & Yari Khosroushahi, A. Effect of the surface modification, size, and shape on cellular uptake of nanoparticles. Cell Biol. Int. 39, 881–890 (2015).

    Google Scholar 

  • Doane, T. L., Chuang, C.-H., Hill, R. J. & Burda, C. Nanoparticle ζ-potentials. Acc. Chem. Res. 45, 317–326 (2012).

    Google Scholar 

  • Mura, S., Nicolas, J. & Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater. 12, 991–1003 (2013).

    ADS 

    Google Scholar 

  • Colombo, M. et al. Tumour homing and therapeutic effect of colloidal nanoparticles depend on the number of attached antibodies. Nat. Commun. 7, 13818 (2016).

    ADS 

    Google Scholar 

  • Cheng, Y. et al. A multifunctional peptide-conjugated AIEgen for efficient and sequential targeted gene delivery into the nucleus. Angew. Chem. Int. Ed. 58, 5049–5053 (2019).

    Google Scholar 

  • Herda, L. M., Hristov, D. R., Lo Giudice, M. C., Polo, E. & Dawson, K. A. Mapping of molecular structure of the nanoscale surface in bionanoparticles. J. Am. Chem. Soc. 139, 111–114 (2017).

    Google Scholar 

  • Conte, C. et al. Multi-component bioresponsive nanoparticles for synchronous delivery of docetaxel and TUBB3 siRNA to lung cancer cells. Nanoscale 13, 11414–11426 (2021).

    Google Scholar 

  • Chen, F. et al. Complement proteins bind to nanoparticle protein corona and undergo dynamic exchange in vivo. Nat. Nanotechnol. 12, 387–393 (2017).

    ADS 

    Google Scholar 

  • Kim, J., Koo, B.-K. & Knoblich, J. A. Human organoids: model systems for human biology and medicine. Nat. Rev. Mol. Cell Biol. 21, 571–584 (2020).

    Google Scholar 

  • Skylar-Scott, M. A. et al. Biomanufacturing of organ-specific tissues with high cellular density and embedded vascular channels. Sci. Adv. 5, eaaw2459 (2022).

    ADS 

    Google Scholar 

  • Low, L. A., Mummery, C., Berridge, B. R., Austin, C. P. & Tagle, D. A. Organs-on-chips: into the next decade. Nat. Rev. Drug Discov. 20, 345–361 (2021).

    Google Scholar 

  • Kohl, Y. et al. Microfluidic in vitro platform for (nano)safety and (nano)drug efficiency screening. Small 17, 2006012 (2021).

    Google Scholar 

  • Conde, J., Oliva, N., Zhang, Y. & Artzi, N. Local triple-combination therapy results in tumour regression and prevents recurrence in a colon cancer model. Nat. Mater. 15, 1128–1138 (2016).

    ADS 

    Google Scholar 

  • Poley, M. et al. Chemotherapeutic nanoparticles accumulate in the female reproductive system during ovulation affecting fertility and anticancer activity. Preprint at bioRxiv https://doi.org/10.1101/2020.07.22.216168 (2020).

    Article 

    Google Scholar 

  • Duan, X. & Li, Y. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9, 1521–1532 (2013).

    Google Scholar 

  • Elci, S. G. et al. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano 10, 5536–5542 (2016).

    Google Scholar 

  • Soo Choi, H. et al. Renal clearance of quantum dots. Nat. Biotechnol. 25, 1165–1170 (2007).

    Google Scholar 

  • Hoshyar, N., Gray, S., Han, H. & Bao, G. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11, 673–692 (2016).

    Google Scholar 

  • García, K. P. et al. Zwitterionic-coated “stealth” nanoparticles for biomedical applications: recent advances in countering biomolecular corona formation and uptake by the mononuclear phagocyte system. Small 10, 2516–2529 (2014).

    Google Scholar 

  • Moitra, P., Alafeef, M., Dighe, K., Frieman, M. B. & Pan, D. Selective naked-eye detection of SARS-CoV-2 mediated by N gene targeted antisense oligonucleotide capped plasmonic nanoparticles. ACS Nano 14, 7617–7627 (2020).

    Google Scholar 

  • Jwa-Min, N., Shad, T. C. & Mirkin, C. A. Nanoparticle-based bio-bar codes for the ultrasensitive detection of proteins. Science 301, 1884–1886 (2003).

    ADS 

    Google Scholar 

  • Liu, J. & Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. 45, 90–94 (2006).

    Google Scholar 

  • Liu, J. & Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125, 6642–6643 (2003).

    Google Scholar 

  • Robert, E., Storhoff, J. J., Mucic, R. C., Letsinger, R. L. & Mirkin, C. A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Google Scholar 

  • Andrew, T. T., Mirkin, C. A. & Letsinger, R. L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    ADS 

    Google Scholar 

  • Charles, C. Y., Rongchao, J. & Mirkin, C. A. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 297, 1536–1540 (2002).

    ADS 

    Google Scholar 

  • Walker, T. et al. Clinical Impact of laboratory implementation of verigene BC-GN microarray-based assay for detection of Gram-negative bacteria in positive blood cultures. J. Clin. Microbiol. 54, 1789–1796 (2016).

    Google Scholar 

  • Georganopoulou, D. G. et al. Nanoparticle-based detection in cerebral spinal fluid of a soluble pathogenic biomarker for Alzheimer’s disease. Proc. Natl Acad. Sci. USA 102, 2273–2276 (2005).

    ADS 

    Google Scholar 

  • Han, M. S., Lytton-Jean, A. K. R., Oh, B.-K., Heo, J. & Mirkin, C. A. Colorimetric screening of DNA-binding molecules with gold nanoparticle probes. Angew. Chem. Int. Ed. 45, 1807–1810 (2006).

    Google Scholar 

  • Liu, J. & Lu, Y. Accelerated color change of gold nanoparticles assembled by DNAzymes for simple and fast colorimetric Pb2+ detection. J. Am. Chem. Soc. 126, 12298–12305 (2004).

    Google Scholar 

  • Yang, L. et al. Efficient delivery of antisense oligonucleotides using bioreducible lipid nanoparticles in vitro and in vivo. Mol. Ther. Nucleic Acids 19, 1357–1367 (2020).

    Google Scholar 

  • Khan, F. O. et al. Endothelial siRNA delivery in nonhuman primates using ionizable low-molecular weight polymeric nanoparticles. Sci. Adv. 4, eaar8409 (2021).

    ADS 

    Google Scholar 

  • Wei, T. et al. siRNA nanoparticles targeting CaMKIIγ in lesional macrophages improve atherosclerotic plaque stability in mice. Sci. Transl. Med. 12, eaay1063 (2020).

    Google Scholar 

  • Conde, J. et al. Design of multifunctional gold nanoparticles for in vitro and in vivo gene silencing. ACS Nano 6, 8316–8324 (2012).

    Google Scholar 

  • Wen, L. et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci. Adv. 7, eabd6889 (2021).

    ADS 

    Google Scholar 

  • Zhao, W., Hou, X., Vick, O. G. & Dong, Y. RNA delivery biomaterials for the treatment of genetic and rare diseases. Biomaterials 217, 119291 (2019).

    Google Scholar 

  • Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111–114 (2006).

    ADS 

    Google Scholar 

  • Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nat. Biotechnol. 23, 1002–1007 (2005).

    Google Scholar 

  • Mendes, B. B., Sousa, D. P., Conniot, J. & Conde, J. Nanomedicine-based strategies to target and modulate the tumor microenvironment. Trends Cancer 7, 847–862 (2021).

    Google Scholar 

  • Woodrow, K. A. et al. Intravaginal gene silencing using biodegradable polymer nanoparticles densely loaded with small-interfering RNA. Nat. Mater. 8, 526–533 (2009).

    ADS 

    Google Scholar 

  • Wilson, D. S. et al. Orally delivered thioketal nanoparticles loaded with TNF-α–siRNA target inflammation and inhibit gene expression in the intestines. Nat. Mater. 9, 923–928 (2010).

    ADS 

    Google Scholar 

  • Debacker, A. J., Voutila, J., Catley, M., Blakey, D. & Habib, N. Delivery of oligonucleotides to the liver with GalNAc: from research to registered therapeutic drug. Mol. Ther. 28, 1759–1771 (2020).

    Google Scholar 

  • Zuris, J. A. et al. Cationic lipid-mediated delivery of proteins enables efficient protein-based genome editing in vitro and in vivo. Nat. Biotechnol. 33, 73–80 (2015).

    Google Scholar 

  • Zhang, H.-X., Zhang, Y. & Yin, H. Genome editing with mRNA encoding ZFN, TALEN, and Cas9. Mol. Ther. 27, 735–746 (2019).

    Google Scholar 

  • Xu, C.-F. et al. Rational designs of in vivo CRISPR–Cas delivery systems. Adv. Drug Deliv. Rev. 168, 3–29 (2021).

    Google Scholar 

  • Liu, S. et al. Membrane-destabilizing ionizable phospholipids for organ-selective mRNA delivery and CRISPR–Cas gene editing. Nat. Mater. 20, 701–710 (2021).

    ADS 

    Google Scholar 

  • Parayath, N. N., Stephan, S. B., Koehne, A. L., Nelson, P. S. & Stephan, M. T. In vitro-transcribed antigen receptor mRNA nanocarriers for transient expression in circulating T cells in vivo. Nat. Commun. 11, 6080 (2020).

    ADS 

    Google Scholar 

  • Cheng, Q. et al. Selective organ targeting (SORT) nanoparticles for tissue-specific mRNA delivery and CRISPR–Cas gene editing. Nat. Nanotechnol. 15, 313–320 (2020).

    ADS 

    Google Scholar 

  • Wolff, A. J. et al. Direct gene transfer into mouse muscle in vivo. Science 247, 1465–1468 (1990).

    ADS 

    Google Scholar 

  • Sabnis, S. et al. A novel amino lipid series for mRNA delivery: improved endosomal escape and sustained pharmacology and safety in non-human primates. Mol. Ther. 26, 1509–1519 (2018).

    Google Scholar 

  • Islam, M. A. et al. Restoration of tumour-growth suppression in vivo via systemic nanoparticle-mediated delivery of PTEN mRNA. Nat. Biomed. Eng. 2, 850–864 (2018).

    Google Scholar 

  • Kong, N. et al. Synthetic mRNA nanoparticle-mediated restoration of p53 tumor suppressor sensitizes p53-deficient cancers to mTOR inhibition. Sci. Transl. Med. 11, eaaw1565 (2019).

    Google Scholar 

  • Yao-Xin, L. et al. Reactivation of the tumor suppressor PTEN by mRNA nanoparticles enhances antitumor immunity in preclinical models. Sci. Transl. Med. 13, eaba9772 (2021).

    Google Scholar 

  • Chaudhary, N., Weissman, D. & Whitehead, K. A. mRNA vaccines for infectious diseases: principles, delivery and clinical translation. Nat. Rev. Drug Discov. 20, 817–838 (2021).

    Google Scholar 

  • Pardi, N., Hogan, M. J., Porter, F. W. & Weissman, D. mRNA vaccines — a new era in vaccinology. Nat. Rev. Drug Discov. 17, 261–279 (2018).

    Google Scholar 

  • Islam, M. A. et al. Adjuvant-pulsed mRNA vaccine nanoparticle for immunoprophylactic and therapeutic tumor suppression in mice. Biomaterials 266, 120431 (2021).

    Google Scholar 

  • Zhang, H. et al. Delivery of mRNA vaccine with a lipid-like material potentiates antitumor efficacy through Toll-like receptor 4 signaling. Proc. Natl Acad. Sci. USA 118, e2005191118 (2021).

    Google Scholar 

  • Smith, T. T. et al. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12, 813–820 (2017).

    Google Scholar 

  • Capece, D., Verzella, D., Fischietti, M., Zazzeroni, F. & Alesse, E. Targeting costimulatory molecules to improve antitumor immunity. J. Biomed. Biotechnol. 2012, 926321 (2012).

    Google Scholar 

  • Hewitt, L. S. et al. Durable anticancer immunity from intratumoral administration of IL-23, IL-36γ, and OX40L mRNAs. Sci. Transl. Med. 11, eaat9143 (2019).

    Google Scholar 

  • Conniot, J. et al. Immunization with mannosylated nanovaccines and inhibition of the immune-suppressing microenvironment sensitizes melanoma to immune checkpoint modulators. Nat. Nanotechnol. 14, 891–901 (2019).

    ADS 

    Google Scholar 

  • Sago, C. D. et al. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. Proc. Natl Acad. Sci. USA 115, E9944–E9952 (2018).

    Google Scholar 

  • Guimaraes, P. P. G. et al. Ionizable lipid nanoparticles encapsulating barcoded mRNA for accelerated in vivo delivery screening. J. Control. Rel. 316, 404–417 (2019).

    Google Scholar 

  • Seiichi, O., Dylan, G. & Chan, W. C. W. DNA-controlled dynamic colloidal nanoparticle systems for mediating cellular interaction. Science 351, 841–845 (2016).

    Google Scholar 

  • Schrurs, F. & Lison, D. Focusing the research efforts. Nat. Nanotechnol. 7, 546–548 (2012).

    ADS 

    Google Scholar 

  • Cheng, Y., Morshed, R. A., Auffinger, B., Tobias, A. L. & Lesniak, M. S. Multifunctional nanoparticles for brain tumor imaging and therapy. Adv. Drug Deliv. Rev. 66, 42–57 (2014).

    Google Scholar 

  • Jain, R. K. & Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 7, 653–664 (2010).

    Google Scholar 

  • Junttila, M. R. & de Sauvage, F. J. Influence of tumour micro-environment heterogeneity on therapeutic response. Nature 501, 346–354 (2013).

    ADS 

    Google Scholar 

  • Bedard, P. L., Hansen, A. R., Ratain, M. J. & Siu, L. L. Tumour heterogeneity in the clinic. Nature 501, 355–364 (2013).

    ADS 

    Google Scholar 

  • Leong, H. S. et al. On the issue of transparency and reproducibility in nanomedicine. Nat. Nanotechnol. 14, 629–635 (2019).

    ADS 

    Google Scholar 

  • Lammers, T. & Storm, G. Setting standards to promote progress in bio–nano science. Nat. Nanotechnol. 14, 626 (2019).

    ADS 

    Google Scholar 

  • Florindo, H. F., Madi, A. & Satchi-Fainaro, R. Challenges in the implementation of MIRIBEL criteria on nanobiomed manuscripts. Nat. Nanotechnol. 14, 627–628 (2019).

    ADS 

    Google Scholar 

  • [No authors listed] Voices from the community. Nat. Nanotechnol. 14, 625 (2019).

    ADS 

    Google Scholar 

  • Zu, H. & Gao, D. Non-viral vectors in gene therapy: recent development, challenges, and prospects. AAPS J. 23, 78 (2021).

    Google Scholar 

  • Hill, A. B., Chen, M., Chen, C.-K., Pfeifer, B. A. & Jones, C. H. Overcoming gene-delivery hurdles: physiological considerations for nonviral vectors. Trends Biotechnol. 34, 91–105 (2016).

    Google Scholar 

  • Ginn, S. L., Amaya, A. K., Alexander, I. E., Edelstein, M. & Abedi, M. R. Gene therapy clinical trials worldwide to 2017: an update. J. Gene Med. 20, e3015 (2018).

    Google Scholar 

  • Ramamoorth, M. & Narvekar, A. Non viral vectors in gene therapy — an overview. J. Clin. Diagn. Res. 9, GE01–GE06 (2015).

    Google Scholar 

  • Wei, Y., Quan, L., Zhou, C. & Zhan, Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine 13, 1495–1512 (2018).

    Google Scholar 

  • Sato, Y. et al. Elucidation of the physicochemical properties and potency of siRNA-loaded small-sized lipid nanoparticles for siRNA delivery. J. Control. Rel. 229, 48–57 (2016).

    Google Scholar 

  • Cabral, H. et al. Accumulation of sub-100 nm polymeric micelles in poorly permeable tumours depends on size. Nat. Nanotechnol. 6, 815–823 (2011).

    ADS 

    Google Scholar 

  • Phan, H. T. & Haes, A. J. What does nanoparticle stability mean? J. Phys. Chem. C 123, 16495–16507 (2019).

    Google Scholar 

  • Roberts, T. C., Langer, R. & Wood, M. J. A. Advances in oligonucleotide drug delivery. Nat. Rev. Drug Discov. 19, 673–694 (2020).

    Google Scholar 

  • Lorenc, A. et al. Machine learning for next-generation nanotechnology in healthcare. Matter 4, 3078–3080 (2021).

    Google Scholar 

  • Shi, Y., van der Meel, R., Chen, X. & Lammers, T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics 10, 7921–7924 (2020).

    Google Scholar 

  • Park, J. et al. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics 9, 8073–8090 (2019).

    Google Scholar 

  • Paunovska, K. et al. Analyzing 2000 in vivo drug delivery data points reveals cholesterol structure impacts nanoparticle delivery. ACS Nano 12, 8341–8349 (2018).

    Google Scholar 

  • Vaughan, H. J., Green, J. J. & Tzeng, S. Y. Cancer-targeting nanoparticles for combinatorial nucleic acid delivery. Adv. Mater. 32, 1901081 (2020).

    Google Scholar 

  • Chakraborty, C., Sharma, A. R., Bhattacharya, M. & Lee, S.-S. From COVID-19 to cancer mRNA vaccines: moving from bench to clinic in the vaccine landscape. Front. Immunol. 12, 2648 (2021).

    Google Scholar 

  • Tombácz, I., Weissman, D. & Pardi, N. in Vaccination with Messenger RNA: A Promising Alternative to DNA Vaccination BT – DNA Vaccines: Methods and Protocols (ed. Sousa, Â.) 13–31 (Springer US, 2021).

  • Maruggi, G., Zhang, C., Li, J., Ulmer, J. B. & Yu, D. mRNA as a transformative technology for vaccine development to control infectious diseases. Mol. Ther. 27, 757–772 (2019).

    Google Scholar 

  • Fundytus, A. et al. Access to cancer medicines deemed essential by oncologists in 82 countries: an international, cross-sectional survey. Lancet Oncol. 22, 1367–1377 (2021).

    Google Scholar 

  • Excler, J.-L., Privor-Dumm, L. & Kim, J. H. Supply and delivery of vaccines for global health. Curr. Opin. Immunol. 71, 13–20 (2021).

    Google Scholar 

  • Eccleston-Turner, M. & Upton, H. International collaboration to ensure equitable access to vaccines for COVID-19: the ACT-Accelerator and the COVAX Facility. Milbank Q. 99, 426–449 (2021).

    Google Scholar 

  • Plotkin, S., Robinson, J. M., Cunningham, G., Iqbal, R. & Larsen, S. The complexity and cost of vaccine manufacturing — an overview. Vaccine 35, 4064–4071 (2017).

    Google Scholar 

  • Prager, F. D. Historic background and foundation of american patent law. Am. J. Leg. Hist. 5, 309–325 (1961).

    Google Scholar 

  • Lévêque, F. & Ménière, Y. Patents and innovation: friends or foes? SSRN https://doi.org/10.2139/ssrn.958830 (2006).

    Article 

    Google Scholar 

  • Braithwaite, J. Corporate Crime in the Pharmaceutical Industry (Routledge Revivals) (Routledge, 2013).

  • Okereke, M. Towards vaccine equity: should big pharma waive intellectual property rights for COVID-19 vaccines? Public Heal. Pract. 2, 100165 (2021).

    Google Scholar 

  • Kon, E., Elia, U. & Peer, D. Principles for designing an optimal mRNA lipid nanoparticle vaccine. Curr. Opin. Biotechnol. 73, 329–336 (2022).

    Google Scholar 

  • Ramishetti, S. et al. A combinatorial library of lipid nanoparticles for RNA delivery to leukocytes. Adv. Mater. 32, 1906128 (2020).

    Google Scholar 

  • Billingsley, M. M. et al. Ionizable lipid nanoparticle-mediated mRNA delivery for human CAR T cell engineering. Nano Lett. 20, 1578–1589 (2020).

    ADS 

    Google Scholar 

  • Yamankurt, G. et al. Exploration of the nanomedicine-design space with high-throughput screening and machine learning. Nat. Biomed. Eng. 3, 318–327 (2019).

    Google Scholar 

  • Shamay, Y. et al. Quantitative self-assembly prediction yields targeted nanomedicines. Nat. Mater. 17, 361–368 (2018).

    ADS 

    Google Scholar 

  • Yesselman, J. D. et al. Computational design of three-dimensional RNA structure and function. Nat. Nanotechnol. 14, 866–873 (2019).

    ADS 

    Google Scholar 

  • Leppek, K. et al. Combinatorial optimization of mRNA structure, stability, and translation for RNA-based therapeutics. Preprint at bioRxiv https://doi.org/10.1101/2021.03.29.437587 (2021).

    Article 

    Google Scholar 

  • Source link