Preloader

An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis

  • Becattini, S., Taur, Y. & Pamer, E. G. Antibiotic-induced changes in the intestinal microbiota and disease. Trends Mol. Med. 22, 458–478 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Karachalios, G. & Charalabopoulos, K. Biliary excretion of antimicrobial drugs. Chemotherapy 48, 280–297 (2002).

    PubMed 

    Google Scholar 

  • Ghibellini, G., Leslie, E. M. & Brouwer, K. L. Methods to evaluate biliary excretion of drugs in humans: an updated review. Mol. Pharm. 3, 198–211 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stecher, B., Maier, L. & Hardt, W. D. ‘Blooming’ in the gut: how dysbiosis might contribute to pathogen evolution. Nat. Rev. Microbiol. 11, 277–284 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Modi, S. R., Lee, H. H., Spina, C. S. & Collins, J. J. Antibiotic treatment expands the resistance reservoir and ecological network of the phage metagenome. Nature 499, 219–222 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kent, A. G., Vill, A. C., Shi, Q., Satlin, M. J. & Brito, I. L. Widespread transfer of mobile antibiotic resistance genes within individual gut microbiomes revealed through bacterial Hi-C. Nat. Commun. 11, 4379 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Modi, S. R., Collins, J. J. & Relman, D. A. Antibiotics and the gut microbiota. J. Clin. Investig. 124, 4212–4218 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • WHO Report on Surveillance of Antibiotic Consumption: 2016–2018 Early Implementation (World Health Organization, 2018).

  • Draper, K., Ley, C. & Parsonnet, J. Probiotic guidelines and physician practice: a cross-sectional survey and overview of the literature. Benef. Microbes 8, 507–519 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Suez, J., Zmora, N., Segal, E. & Elinav, E. The pros, cons, and many unknowns of probiotics. Nat. Med. 25, 716–729 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Hempel, S. et al. Safety of probiotics to reduce risk and prevent or treat disease. Evid. Rep. Technol. Assess. 200, 1–645 (2011).

    Google Scholar 

  • Suez, J. et al. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174, 1406–1423.e16 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Bermudez-Humaran, L. G. et al. Engineering lactococci and lactobacilli for human health. Curr. Opin. Microbiol. 16, 278–283 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Fisher, J. F. & Mobashery, S. β-Lactam resistance mechanisms: Gram-positive bacteria and Mycobacterium tuberculosis. Cold Spring Harb. Perspect. Med. 6, a025221 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Wright, G. D. Bacterial resistance to antibiotics: enzymatic degradation and modification. Adv. Drug Deliv. Rev. 57, 1451–1470 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Bush, K. Past and present perspectives on β-lactamases. Antimicrob. Agents Chemother. 62, e01076–18 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bush, K. & Bradford, P. A. Epidemiology of β-lactamase-producing pathogens. Clin. Microbiol. Rev. 33, e00047–19 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Teuber, M. in The Genera of Lactic Acid Bacteria (eds Wood, B. J. B. & Holzapfel, W. H.) 173–234 (Springer, 1995).

  • Limaye, S. A. et al. Phase 1b, multicenter, single blinded, placebo-controlled, sequential dose escalation study to assess the safety and tolerability of topically applied AG013 in subjects with locally advanced head and neck cancer receiving induction chemotherapy. Cancer 119, 4268–4276 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Braat, H. et al. A phase I trial with transgenic bacteria expressing interleukin-10 in Crohn’s disease. Clin. Gastroenterol. Hepatol. 4, 754–759 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C. et al. Ecological robustness of the gut microbiota in response to ingestion of transient food-borne microbes. ISME J. 10, 2235–2245 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Galarneau, A., Primeau, M., Trudeau, L.-E. & Michnick, S. W. β-Lactamase protein fragment complementation assays as in vivo and in vitro sensors of protein–protein interactions. Nat. Biotechnol. 20, 619–622 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • Zakeri, B. et al. Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proc. Natl Acad. Sci. USA 109, E690–E697 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nielsen, J. B. & Lampen, J. O. Membrane-bound penicillinases in Gram-positive bacteria. J. Biol. Chem. 257, 4490–4495 (1982).

    CAS 
    PubMed 

    Google Scholar 

  • Forsberg, K. J. et al. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jernberg, C., Lofmark, S., Edlund, C. & Jansson, J. K. Long-term ecological impacts of antibiotic administration on the human intestinal microbiota. ISME J. 1, 56–66 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Alcock, B. P. et al. CARD 2020: antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Res. 48, D517–D525 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Buffie, C. G. et al. Precision microbiome reconstitution restores bile acid mediated resistance to Clostridium difficile. Nature 517, 205–208 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Schubert, A. M., Sinani, H. & Schloss, P. D. Antibiotic-induced alterations of the murine gut microbiota and subsequent effects on colonization resistance against Clostridium difficile. mBio 6, e00974 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Crobach, M. J. T. et al. Understanding Clostridium difficile colonization. Clin. Microbiol Rev. 31, e00021–17 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Theriot, C. M. et al. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase susceptibility to Clostridium difficile infection. Nat. Commun. 5, 3114 (2014).

    PubMed 

    Google Scholar 

  • Wong, J. M. W., de Souza, R., Kendall, C. W. C., Emam, A. & Jenkins, D. J. A. Colonic health: fermentation and short chain fatty acids. J. Clin. Gastroenterol. 40, 235–243 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Theriot, C. M., Bowman, A. A. & Young, V. B. Antibiotic-induced alterations of the gut microbiota alter secondary bile acid production and allow for Clostridium difficile spore germination and outgrowth in the large intestine. mSphere 1, e00045–15 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lewis, B. B., Carter, R. A. & Pamer, E. G. Bile acid sensitivity and in vivo virulence of clinical Clostridium difficile isolates. Anaerobe 41, 32–36 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Steidler, L. et al. Biological containment of genetically modified Lactococcus lactis for intestinal delivery of human interleukin 10. Nat. Biotechnol. 21, 785–789 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Schwartz, D. J., Langdon, A. E. & Dantas, G. Understanding the impact of antibiotic perturbation on the human microbiome. Genome Med. 12, 82 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Harmoinen, J. et al. Enzymic degradation of a β-lactam antibiotic, ampicillin, in the gut: a novel treatment modality. J. Antimicrob. Chemother. 51, 361–365 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Kaleko, M. et al. Development of SYN-004, an oral β-lactamase treatment to protect the gut microbiome from antibiotic-mediated damage and prevent Clostridium difficile infection. Anaerobe 41, 58–67 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Kokai-Kun, J. F. et al. Use of ribaxamase (SYN-004), a β-lactamase, to prevent Clostridium difficile infection in β-lactam-treated patients: a double-blind, phase 2b, randomised placebo-controlled trial. Lancet Infect. Dis. 19, 487–496 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Mao, N., Cubillos-Ruiz, A., Cameron, D. E. & Collins, J. J. Probiotic strains detect and suppress cholera in mice. Sci. Transl. Med. 10, eaao2586 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Edwards, A. N. & McBride, S. M. Isolating and purifying clostridium difficile spores. Methods Mol. Biol. 1476, 117–128 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Salverda, M. L., De Visser, J. A. & Barlow, M. Natural evolution of TEM-1 β-lactamase: experimental reconstruction and clinical relevance. FEMS Microbiol. Rev. 34, 1015–1036 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Cameron, D. E. & Collins, J. J. Tunable protein degradation in bacteria. Nat. Biotechnol. 32, 1276–1281 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Theriot, C. M. et al. Cefoperazone-treated mice as an experimental platform to assess differential virulence of Clostridium difficile strains. Gut Microbes 2, 326–334 (2011).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Winston, J. A., Thanissery, R., Montgomery, S. A. & Theriot, C. M. Cefoperazone-treated mouse model of clinically-relevant Clostridium difficile strain R20291. J. Vis. Exp. 10, 54850 (2016).

    Google Scholar 

  • Bolyen, E. et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol. 37, 852–857 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Callahan, B. J. et al. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13, 581–583 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • McDonald, D. et al. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J. 6, 610–618 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Bokulich, N. A. et al. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6, 90 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kuraku, S., Zmasek, C. M., Nishimura, O. & Katoh, K. aLeaves facilitates on-demand exploration of metazoan gene family trees on MAFFT sequence alignment server with enhanced interactivity. Nucleic Acids Res. 41, W22–W28 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Katoh, K., Rozewicki, J. & Yamada, K. D. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 20, 1160–1166 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree: computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 26, 1641–1650 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B 57, 289–300 (1995).

    Google Scholar 

  • Mandal, S. et al. Analysis of composition of microbiomes: a novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663 (2015).

    PubMed 

    Google Scholar 

  • Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J. 17, 10–12 (2011).

    Google Scholar 

  • Joshi, N. A. & Fass, J. N. Sickle: A sliding-window, adaptive, quality-based trimming tool for FastQ files. https://github.com/najoshi/sickle (2011).

  • Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Parnanen, K. et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat. Commun. 9, 3891 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Venables, W. N. & Ripley, B. D. Modern Applied Statistics with S-PLUS (Springer Science & Business Media, 2013).

  • Miller, R. G. in Simultaneous Statistical Inference (ed. Miller, R. G.) 1–35 (Springer, 1981).

  • McMurdie, P. J. & Holmes, S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8, e61217 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link