Preloader

A Saccharomyces eubayanus haploid resource for research studies

  • Alliance, T. & Consortium, G. R. The alliance of genome resources: Building a modern data ecosystem for model organism databases. Genetics 213, 1189–1196 (2019).

    Article 

    Google Scholar 

  • Cubillos, F. A. Exploiting budding yeast natural variation for industrial processes. Curr. Genet. 62, 745–751 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Pretorius, I. S. & Boeke, J. D. Yeast 2.0-connecting the dots in the construction of the world’s first functional synthetic eukaryotic genome. FEMS Yeast Res. 18, 1–15 (2018).

    Article 
    CAS 

    Google Scholar 

  • Replogle, K., Hovland, L. & Rivier, D. H. Designer deletion and prototrophic strains derived from Saccharomyces cerevisiae strain W303–1a. Yeast 15, 1141–1149 (1999).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Carter, Z. & Delneri, D. New generation of loxP-mutated deletion cassettes for the genetic manipulation of yeast natural isolates. Yeast 27, 765–775 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Akada, R. et al. PCR-mediated seamless gene deletion and marker recycling in Saccharomyces cerevisiae. Yeast 23, 399–405 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Giaever, G. & Nislow, C. The yeast deletion collection: A decade of functional genomics. Genetics 197, 451–465 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cubillos, F. A., Louis, E. J. & Liti, G. Generation of a large set of genetically tractable haploid and diploid Saccharomyces strains. FEMS Yeast Res. 9, 1217–1225 (2009).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Louvel, H., Gillet-Markowska, A., Liti, G. & Fischer, G. A set of genetically diverged Saccharomyces cerevisiae strains with markerless deletions of multiple auxotrophic genes. Yeast 31, 91–101 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Alexander, W. G., Doering, D. T. & Hittinger, C. T. High-efficiency genome editing and allele replacement in prototrophic and wild strains of saccharomyces. Genetics 198, 859–866 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Coi, A. L., Legras, J. L., Zara, G., Dequin, S. & Budroni, M. A set of haploid strains available for genetic studies of Saccharomyces cerevisiae flor yeasts. FEMS Yeast Res. 16, 1–9 (2016).

    Article 
    CAS 

    Google Scholar 

  • Shao, S. et al. Enhancing CRISPR/Cas9-mediated homology-directed repair in mammalian cells by expressing Saccharomyces cerevisiae Rad52. Int. J. Biochem. Cell Biol. 92, 43–52 (2017).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • McIlwraith, M. J. & West, S. C. DNA repair synthesis facilitates RAD52-mediated second-end capture during DSB repair. Mol. Cell 29, 510–516 (2008).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Rainha, J., Rodrigues, J. L. & Rodrigues, L. R. CRISPR-Cas9: A powerful tool to efficiently engineer saccharomyces cerevisiae. Life 11, 1–16 (2021).

    Google Scholar 

  • Fraczek, M. G., Naseeb, S. & Delneri, D. History of genome editing in yeast. Yeast 35, 361–368 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Baganz, F., Hayes, A., Marren, D., Gardner, D. C. & Oliver, S. G. Suitability of replacement markers for functional analysis studies in Saccharomyces cerevisiae. Yeast 13, 1563–1573 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Park, Y., Masison, D., Eisenberg, E. & Greene, L. E. Application of the FLP/FRT system for conditional gene deletion in yeast Saccharomyces cerevisiae. Yeast 28, 673–681 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Yamanishi, M. & Matsuyama, T. A modified cre-lox genetic switch to dynamically control metabolic flow in Saccharomyces cerevisiae. ACS Synth. Biol. 1, 172–180 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Solis-Escalante, D. et al. Efficient simultaneous excision of multiple selectable marker cassettes using I-SceI-induced double-strand DNA breaks in Saccharomyces cerevisiae. FEMS Yeast Res. 14, 741–754 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Mans, R. et al. CRISPR/Cas9: A molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae. FEMS Yeast Res. 15, 1–15 (2015).

    Article 
    CAS 

    Google Scholar 

  • Stovicek, V., Holkenbrink, C. & Borodina, I. CRISPR/Cas system for yeast genome engineering: Advances and applications. FEMS Yeast Res. 17, 1–16 (2017).

    Article 
    CAS 

    Google Scholar 

  • Dicarlo, J. E. et al. Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucl. Acids Res. 41, 4336–4343 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Vigentini, I., Gebbia, M., Belotti, A., Foschino, R. & Roth, F. P. CRISPR/Cas9 system as a valuable genome editing tool for wine yeasts with application to decrease urea production. Front. Microbiol. 8, 1–11 (2017).

    Google Scholar 

  • Jara, M. et al. Mapping genetic variants underlying differences in the central nitrogen metabolism in fermenter yeasts. PLoS ONE 9, e86533 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Cubillos, F. A. et al. High-resolution mapping of complex traits with a four-parent advanced intercross yeast population. Genetics 195, 1141–1155 (2013).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Salinas, F. et al. The genetic basis of natural variation in oenological traits in saccharomyces cerevisiae. PLoS ONE 7, e49640 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Cubillos, F. et al. Identification of nitrogen consumption genetic variants in yeast through QTL mapping and bulk segregant RNA-seq analyses. G3 Genes Genom. Gen. 7, 1693–1705 (2017).

    CAS 

    Google Scholar 

  • Salinas, F. et al. Natural variation in non-coding regions underlying phenotypic diversity in budding yeast. Sci. Rep. 6, 21849 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Villarroel, C. A., Bastías, M., Canessa, P. & Cubillos, F. A. Uncovering divergence in gene expression regulation in the adaptation of yeast to nitrogen scarcity. mSystems 6, (2021).

  • Alsammar, H. & Delneri, D. An update on the diversity, ecology and biogeography of the Saccharomyces genus. FEMS Yeast Res. 20, (2020).

  • Cubillos, F. A., Gibson, B., Grijalva-Vallejos, N., Krogerus, K. & Nikulin, J. Bioprospecting for brewers: Exploiting natural diversity for naturally diverse beers. Yeast https://doi.org/10.1002/yea.3380 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Libkind, D. et al. Into the wild: new yeast genomes from natural environments and new tools for their analysis. FEMS Yeast Res. 20, (2020).

  • Molinet, J. & Cubillos, F. A. Wild yeast for the future: Exploring the use of wild strains for wine and beer fermentation. Front. Genet. 11, 1–8 (2020).

    Article 
    CAS 

    Google Scholar 

  • Urbina, K. et al. Volatile compound screening using HS-SPME-GC/MS on saccharomyces eubayanus strains under low-temperature pilsner wort fermentation. Microorganisms 8, 1–19 (2020).

    Article 
    CAS 

    Google Scholar 

  • Mardones, W. et al. Molecular profiling of beer wort fermentation diversity across natural Saccharomyces eubayanus isolates. Microb. Biotechnol. https://doi.org/10.1111/1751-7915.13545 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nespolo, R. F. et al. An Out-of-Patagonia migration explains the worldwide diversity and distribution of Saccharomyces eubayanus lineages. PLoS Genet. 16, e1008777 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Langdon, Q. K. et al. Postglacial migration shaped the genomic diversity and global distribution of the wild ancestor of lager-brewing hybrids. PLOS Genet. 16, e1008680 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Giannakou, K. et al. Biotechnological exploitation of Saccharomyces jurei and its hybrids in craft beer fermentation uncovers new aroma combinations. Food Microbiol. 100, 103838 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Hutzler, M. et al. Unique brewing-relevant properties of a strain of saccharomyces jurei isolated from ash (Fraxinus excelsior). Front. Microbiol. 12, 1–14 (2021).

    Article 

    Google Scholar 

  • Magalhães, F., Calton, A., Heiniö, R. L. & Gibson, B. Frozen-dough baking potential of psychrotolerant Saccharomyces species and derived hybrids. Food Microbiol. 94, (2021).

  • Libkind, D. et al. Microbe domestication and the identification of the wild genetic stock of lager-brewing yeast. Proc. Natl. Acad. Sci. 108, 14539–14544 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Lin, C. L. et al. Packing a punch: understanding how flavours are produced in lager fermentations. FEMS Yeast Res. 21, 1–14 (2021).

    CAS 
    Article 

    Google Scholar 

  • Bonatto, D. The diversity of commercially available ale and lager yeast strains and the impact of brewer ’ s preferential yeast choice on the fermentative beer profiles. Food Res. Int. 141, 110125 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Bing, J., Han, P. J., Liu, W. Q., Wang, Q. M. & Bai, F. Y. Evidence for a far east asian origin of lager beer yeast. Curr. Biol. 24, R380–R381 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Peris, D. et al. Population structure and reticulate evolution of Saccharomyces eubayanus and its lager-brewing hybrids. Mol. Ecol. 23, 2031–2045 (2014).

    PubMed 
    Article 

    Google Scholar 

  • Gayevskiy, V. & Goddard, M. R. Saccharomyces eubayanus and Saccharomyces arboricola reside in North Island native New Zealand forests. Environ. Microbiol. 18, 1137–1147 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Eizaguirre, J. I. et al. Phylogeography of the wild Lager-brewing ancestor (Saccharomyces eubayanus) in Patagonia. Environ. Microbiol. 20, 3732–3743 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Villarreal, P. et al. Identification of new ethanol-tolerant yeast strains with fermentation potential from central Patagonia. Yeast https://doi.org/10.1002/yea.3662 (2021).

    Article 
    PubMed 

    Google Scholar 

  • Gibson, B. et al. New yeasts-new brews: Modern approaches to brewing yeast design and development. FEMS Yeast Res. 17, 1–13 (2017).

    CAS 
    Article 

    Google Scholar 

  • Baker, E. C. P. et al. Mitochondrial DNA and temperature tolerance in lager yeasts. Sci. Adv. 5, 1–8 (2019).

    Google Scholar 

  • Brouwers, N. et al. Himalayan saccharomyces eubayanus genome sequences reveal genetic markers explaining heterotic maltotriose consumption by saccharomyces pastorianus hybrids. Appl. Environ. Microbiol. 85, 1–22 (2019).

    Article 

    Google Scholar 

  • Baker, E. C. P. & Hittinger, C. T. Evolution of a novel chimeric maltotriose transporter in Saccharomyces eubayanus from parent proteins unable to perform this function. PLoS Genet. 15, e1007786 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Karademir Andersson, A., Oredsson, S. & Cohn, M. Development of stable haploid strains and molecular genetic tools for Naumovozyma castellii (Saccharomyces castellii). Yeast 33, 633–646 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Fleiss, A. et al. Reshuffling yeast chromosomes with CRISPR/Cas9. PLOS Genet. 15, e1008332 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Brickwedde, A. et al. Structural, physiological and regulatory analysis of maltose transporter genes in Saccharomyces eubayanus CBS 12357T. Front. Microbiol. 9, 1–18 (2018).

    Article 

    Google Scholar 

  • Mertens, S. et al. Reducing phenolic off-flavors through CRISPR-based gene editing of the FDC1 gene in Saccharomyces cerevisiae x Saccharomyces eubayanus hybrid lager beer yeasts. PLoS ONE 14, e0209124 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Jakočinas, T. et al. Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae. Metab. Eng. 28, 213–222 (2015).

    Article 
    CAS 

    Google Scholar 

  • Brouwers, N. et al. In vivo recombination of Saccharomyces eubayanus maltose-transporter genes yields a chimeric transporter that enables maltotriose fermentation. PLoS Genet. 15, 1–30 (2019).

    Article 
    CAS 

    Google Scholar 

  • Gallone, B. et al. Origins, evolution, domestication and diversity of Saccharomyces beer yeasts. Curr. Opin. Biotechnol. 49, 148–155 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gerke, J., Lorenz, K. & Cohen, B. Genetic interactions between transcription factors cause natural variation in yeast. Science (80-) 323, 498–501 (2009).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zörgö, E. et al. Ancient evolutionary trade-offs between yeast ploidy states. PLoS Genet. 9, (2013).

  • Hebly, M. et al. S. cerevisiae × S. eubayanus interspecific hybrid, the best of both worlds and beyond. FEMS Yeast Res. 15, 1–14 (2015).

    Article 
    CAS 

    Google Scholar 

  • Blattner, G., Cavazza, A., Thrasher, A. J. & Turchiano, G. Gene editing and genotoxicity: Targeting the off-targets. Front. Genome Ed. 2, 1–10 (2020).

    Article 

    Google Scholar 

  • Doench, J. G. et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34, 184–191 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Chin, Y. W., Shin, S. C., Han, S., Jang, H. W. & Kim, H. J. CRISPR/Cas9-mediated Inactivation of arginase in a yeast strain isolated from Nuruk and its impact on the whole genome. J. Biotechnol. 341, 163–167 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gorter De Vries, A. R. et al. Allele-specific genome editing using CRISPR-Cas9 is associated with loss of heterozygosity in diploid yeast. Nucl. Acids Res. 47, 1362–1372 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Brion, C. et al. Variation of the meiotic recombination landscape and properties over a broad evolutionary distance in yeasts. PLoS Genet. 13, 1–21 (2017).

    MathSciNet 
    Article 
    CAS 

    Google Scholar 

  • Martini, E. et al. Genome-wide analysis of heteroduplex DNA in mismatch repair-deficient yeast cells reveals novel properties of meiotic recombination pathways. PLoS Genet. 7, (2011).

  • Simchen, G., Mansour, O., Morciano, L., Zenvirth, D. & Arbel-Eden, A. Mutagenicity in haploid yeast meiosis resulting from repair of DSBs by the sister chromatid. Curr. Genet. 67, 799–806 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Onetto, C. A., Borneman, A. R. & Schmidt, S. A. Strain-specific responses by saccharomyces cerevisiae to competition by non-saccharomyces yeasts. Fermentation 7, (2021).

  • Lang, G. I., Murray, A. W. & Botstein, D. The cost of gene expression underlies a fitness trade-off in yeast. Proc. Natl. Acad. Sci. U. S. A. 106, 5755–5760 (2009).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Steensels, J., Meersman, E., Snoek, T., Saels, V. & Verstrepen, K. J. Large-scale selection and breeding to generate industrial yeasts with superior aroma production. Appl. Environ. Microbiol. 80, 6965–6975 (2014).

    ADS 
    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Stelkens, R. B., Brockhurst, M. A., Hurst, G. D. D. & Greig, D. Hybridization facilitates evolutionary rescue. Evol. Appl. 7, 1209–1217 (2014).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Agarbati, A., Canonico, L., Comitini, F. & Ciani, M. Reduction of sulfur compounds through genetic improvement of native saccharomyces cerevisiae useful for organic and sulfite-free wine. Foods 9, (2020).

  • Kessi-Pérez, E. et al. Generation of a non-transgenic genetically improved yeast strain for wine production from nitrogen-deficient musts. Microorganisms 8, 1194 (2020).

    PubMed Central 
    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eberlein, C. et al. Hybridization is a recurrent evolutionary stimulus in wild yeast speciation. Nat. Commun. 10, (2019).

  • Bernardes, J. P., Stelkens, R. B. & Greig, D. Heterosis in hybrids within and between yeast species. J. Evol. Biol. 30, 538–548 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Banderas, A., Koltai, M., Anders, A. & Sourjik, V. Sensory input attenuation allows predictive sexual response in yeast. Nat. Commun. 7, 1–9 (2016).

    Article 
    CAS 

    Google Scholar 

  • Toyomura, K. & Hisatomi, T. Postzygotic reproductive isolation among three Saccharomyces yeast species. Yeast 38, 326–335 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • Selmecki, A. M. et al. Polyploidy can drive rapid adaptation in yeast. Nature 519, 349–351 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Gerstein, A. C., Cleathero, L. A., Mandegar, M. A. & Otto, S. P. Haploids adapt faster than diploids across a range of environments. J. Evol. Biol. 24, 531–540 (2011).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gerstein, A. C. & Otto, S. P. Cryptic fitness advantage: Diploids invade haploid populations despite lacking any apparent advantage as measured by standard fitness assays. PLoS One 6, (2011).

  • Bessho, K., Iwasa, Y. & Day, T. The evolutionary advantage of haploid versus diploid microbes in nutrient-poor environments. J. Theor. Biol. 383, 116–129 (2015).

    ADS 
    MathSciNet 
    PubMed 
    MATH 
    Article 

    Google Scholar 

  • Mable, B. K. Ploidy evolution in the yeast Saccharomyces cerevisiae: A test of the nutrient limitation hypothesis. J. Evol. Biol. 14, 157–170 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Horwitz, A. A. et al. Efficient multiplexed integration of synergistic alleles and metabolic pathways in yeasts via CRISPR-Cas. Cell Syst. 1, 88–96 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Gietz, R. D. & Schiestl, R. H. Quick and easy yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat. Protoc. 2, 35–37 (2007).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Chen, S., Zhou, Y., Chen, Y. & Gu, J. Fastp: An ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34, i884–i890 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • Garrison, E. & Marth, G. Haplotype-based variant detection from short-read sequencing. arXiv 1–9 (2012).

  • Robinson, J. T. et al. Integrative genome viewer. Nat. Biotechnol. 29, 24–26 (2011).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Li, H. Minimap2: Pairwise alignment for nucleotide sequences. Bioinformatics 34, 3094–3100 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • Shafin, K. et al. Haplotype-aware variant calling with PEPPER-Margin-DeepVariant enables high accuracy in nanopore long-reads. Nat. Methods 18, 1322–1332 (2021).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long, error-prone reads using repeat graphs. Nat. Biotechnol. 37, 540–546 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Marçais, G., Deblasio, D. & Kingsford, C. Asymptotically optimal minimizers schemes. Bioinformatics 34, i13–i22 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • O’Donnell, S. & Fischer, G. MUM&Co: Accurate detection of all SV types through whole-genome alignment. Bioinformatics 36, 3242–3243 (2020).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Hall, B. G., Acar, H., Nandipati, A. & Barlow, M. Growth rates made easy. Mol. Biol. Evol. 31, 232–238 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • White, C. & Zainasheff, J. Yeast: The practical guide to beer fermentation. (Brewers Publications, 2010).

  • Nissen, T. L., Schulze, U., Nielsen, J. & Villadsen, J. Flux distributions in anaerobic, glucose-limited continuous cultures of saccharomyces cerevisiae. Microbiology 143, 203–218 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Krogerus, K., Holmström, S. & Gibson, B. Enhanced wort fermentation with de novo lager hybrids. Appl. Environ. Microbiol. 84, 1–20 (2018).

    CAS 
    Article 

    Google Scholar 

  • Steensels, J. et al. Improving industrial yeast strains: Exploiting natural and artificial diversity. FEMS Microbiol. Rev. 38, 947–995 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • Zörgö, E. et al. Life history shapes trait heredity by accumulation of loss-of-function alleles in yeast. Mol. Biol. Evol. 29, 1781–1789 (2012).

    PubMed 
    Article 
    CAS 

    Google Scholar 

  • Mardones, W. et al. Rapid selection response to ethanol in Saccharomyces eubayanus emulates the domestication process under brewing conditions. Microb. Biotechnol. 2, 1–18 (2021).

    Google Scholar 

  • Source link