Preloader

Metal-responsive regulation of enzyme catalysis using genetically encoded chemical switches

  • Davidi, D., Longo, L. M., Jabłońska, J., Milo, R. & Tawfik, D. S. A Bird’s-eye view of enzyme evolution: chemical, physicochemical, and physiological considerations. Chem. Rev. 118, 8786–8797 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Cornish-Bowden, A. Understanding allosteric and cooperative interactions in enzymes. FEBS J. 281, 621–632 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Claaßen, C., Gerlach, T. & Rother, D. Stimulus‐responsive regulation of enzyme activity for one‐step and multi‐step syntheses. Adv. Synth. Catal. 361, 2387–2401 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Prim. 1, 46 (2021).

    CAS 

    Google Scholar 

  • Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409–421 (2018).

    Google Scholar 

  • Taylor, N. D. et al. Engineering an allosteric transcription factor to respond to new ligands. Nat. Methods 13, 177–183 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Buller, A. R. et al. Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation. PNAS 112, 14599–14604 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Jiménez-Osés, G. et al. The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat. Chem. Biol. 10, 431–436 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Otten, R. et al. Rescue of conformational dynamics in enzyme catalysis by directed evolution. Nat. Commun. 9, 1314 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leander, M., Yuan, Y., Meger, A., Cui, Q. & Raman, S. Functional plasticity and evolutionary adaptation of allosteric regulation. PNAS 117, 25445–25454 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ali, M., Ishqi, H. M. & Husain, Q. Enzyme engineering: reshaping the biocatalytic functions. Biotechnol. Bioeng. 117, 1877–1894 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Rigoldi, F., Donini, S., Redaelli, A., Parisini, E. & Gautieri, A. Review: engineering of thermostable enzymes for industrial applications. APL Bioeng. 2, 11501 (2018).

    Google Scholar 

  • Stein, V. & Alexandrov, K. Synthetic protein switches: design principles and applications. Trends Biotechnol. 33, 101–110 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Guo, Z. et al. Generalizable protein biosensors based on synthetic switch modules. JACS 141, 8128–8135 (2020).

    Google Scholar 

  • Adamson, H. & Jeuken, L. J. C. Engineering protein switches for rapid diagnostic tests. ACS Sens. 5, 3001–3012 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Guo, Z. et al. Engineering PQQ-glucose dehydrogenase into an allosteric electrochemical Ca2+ sensor. Chem. Commun. 52, 485–488 (2016).

    CAS 

    Google Scholar 

  • Farhana, I., Hossain, M. N., Suzuki, K., Matsuda, T. & Nagai, T. Genetically encoded fluorescence/bioluminescence bimodal indicators for Ca2+ imaging. ACS Sens. 4, 1825–1834 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, L. P. et al. Establishment of a nanobit-based cytosolic Ca2+ sensor by optimizing calmodulin-binding motif and protein expression levels. Mol. Cells 43, 909–920 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dueber, J. E., Yeh, B. J., Chak, K. & Lim, W. A. Reprogramming control of an allosteric signaling switch through modular recombination. Science 301, 1904–1908 (2003).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Raman, S., Taylor, N., Genuth, N., Fields, S. & Church, G. M. Engineering allostery. Trends Genet. 30, 521–528 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fan, Y., Cross, P. J., Jameson, G. B. & Parker, E. J. Exploring modular allostery via interchangeable regulatory domains. PNAS 115, 3006–3011 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Repina, N. A., Rosenbloom, A., Mukherjee, A., Schaffer, D. V. & Kane, R. S. At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu. Rev. Chem. Biomol. Eng. 8, 13–39 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Pudasaini, A., El-Arab, K. K. & Zoltowski, B. D. LOV-based optogenetic devices: Light-driven modules to impart photoregulated control of cellular signaling. Front. Mol. Biosci. 2, 18 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, H. et al. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13, 755–758 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kennedy, M. J. et al. Rapid blue-light–mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dagliyan, O., Dokholyan, N. V. & Hahn, K. M. Engineering proteins for allosteric control by light or ligands. Nat. Protoc. 14, 1863–1883 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Shaaya, M. et al. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. Elife 9, 1 (2020).

    Google Scholar 

  • Tullman, J., Nicholes, N., Dumont, M. R., Ribeiro, L. F. & Ostermeier, M. Enzymatic protein switches built from paralogous input domains. Biotechnol. Bioeng. 113, 852–858 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Quijano-Rubio, A. et al. De novo design of modular and tunable protein biosensors. Nature 591, 482–487 (2021).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Furikado, Y. et al. Universal reaction mechanism of boronic acids with diols in aqueous solution: kinetics and the basic concept of a conditional formation constant. Chem. Eur. J. 20, 13194–13202 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Bhat, V. T. et al. Nucleophilic catalysis of acylhydrazone equilibration for protein-directed dynamic covalent chemistry. Nat. Chem. 2, 490–497 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kaes, C., Katz, A. & Hosseini, M. W. Bipyridine:  the most widely used ligand. a review of molecules comprising at least two 2,2‘-bipyridine units. Chem. Rev. 100, 3553–3590 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Young, D. D. & Schultz, P. G. Playing with the Molecules of Life. ACS Chem. Biol. 13, 854–870 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tavassoli, A., Hamilton, A. D., Spring, D. R., Beharry, A. A. & Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011).

    Google Scholar 

  • Hoppmann, C., Maslennikov, I., Choe, S. & Wang, L. In situ formation of an azo bridge on proteins controllable by visible light. JACS 137, 11218–11221 (2015).

    CAS 

    Google Scholar 

  • Cao, W. et al. A general supramolecular approach to regulate protein functions by Cucurbit[7]uril and unnatural amino acid recognition. Angew. Chem. Int. Ed. 60, 11196–11200 (2021).

    CAS 

    Google Scholar 

  • Luo, J., Liu, Q., Morihiro, K. & Deiters, A. Small-molecule control of protein function through Staudinger reduction. Nat. Chem. 8, 1027–1034 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, J., Jia, S. & Chen, P. R. Diels-Alder reaction-triggered bioorthogonal protein decaging in living cells. Nat. Chem. Biol. 10, 1003–1005 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Kneuttinger, A. C. et al. Light regulation of enzyme allostery through photo-responsive unnatural amino acids. Cell Chem. Biol. 26, 1501–1514 (2019). e9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kneuttinger, A. C. et al. Significance of the protein interface configuration for allostery in imidazole glycerol phosphate synthase. Biochemistry 59, 2729–2742 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Des Soye, B. J., Gerbasi, V. R., Thomas, P. M., Kelleher, N. L. & Jewett, M. C. A highly productive, one-pot cell-free protein synthesis platform based on genomically recoded Escherichia coli. Cell Chem. Biol. 26, 1743–1754 (2019). e9.

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Reyes-Caballero, H., Campanello, G. C. & Giedroc, D. P. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys. Chem. 156, 103–114 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Harris, M. N., Madura, J. D., Ming, L. J. & Harwood, V. J. Kinetic and mechanistic studies of prolyl oligopeptidase from the Hyperthermophile Pyrococcus furiosus. J. Biol. Chem. 276, 19130–19137 (2001).

    Google Scholar 

  • Ellis-Guardiola, K. et al. Crystal structure and conformational dynamics of Pyrococcus furiosus Prolyl Oligopeptidase. Biochemistry 58, 1616–1626 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Xie, J., Liu, W. & Schultz, P. G. A Genetically Encoded Bidentate. Met.-Binding Amino Acid. Angew. Chem. Int. Ed. 46, 9239–9242 (2007).

    CAS 

    Google Scholar 

  • Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Martin, R. W. et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat. Commun. 9, 1203 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hammerling, M. J., Krüger, A. & Jewett, M. C. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 48, 1068–1083 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Smith, R. M. & Martell, A. E. Critical Stability Constants Volume 2: Amines 235-237 (Plenum Press, New York, 1975).

  • Smith, R. M. & Martell, A. E. Critical Stability Constants Second Supplement 96-99 (Plenum Press, New York, 1989).

  • Kafader, J. O. et al. Native vs denatured: an in depth investigation of Charge State and isotope distributions. J. Am. Soc. Mass Spectrom. 31, 574–581 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vander Griend, D. A., Bediako, D. K., DeVries, M. J., DeJong, N. A. & Heeringa, L. P. Detailed spectroscopic, thermodynamic, and kinetic characterization of nickel(ii) complexes with 2,2‘-Bipyridine and 1,10-Phenanthroline Attained via Equilibrium-Restricted Factor Analysis. Inorg. Chem. 47, 656–662 (2007).

    PubMed 

    Google Scholar 

  • Mason, S. F. The electronic spectra and optical activity of phenanthroline and dipyridyl metal complexes. Inorg. Chim. Acta Rev. 2, 89–109 (1968).

    CAS 

    Google Scholar 

  • Meyer, T. J. Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states. Pure Appl. Chem. 58, 1193–1206 (1986).

    CAS 

    Google Scholar 

  • Gillard, R. D. Progress in Inorganic Chemistry, Volume 7: The Cotton Effect in Coordination Compounds, 215–276 (John Wiley & Sons Inc., Hoboken, 1966).

  • Thorne, N., Inglese, J. & Auld, D. S. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem. Biol. 17, 646–657 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sundlov, J. A., Fontaine, D. M., Southworth, T. L., Branchini, B. R. & Gulick, A. M. Crystal structure of firefly luciferase in a second catalytic conformation supports a domain alternation mechanism. Biochemistry 51, 6493–6495 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • Conti, E., Franks, N. P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4, 287–298 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C. et al. Reversible Ca 2+ switch of an engineered allosteric antioxidant Selenoenzyme. Angew. Chem. Int. Ed. 53, 13536–13539 (2014).

    CAS 

    Google Scholar 

  • Nastri, F. et al. Engineering metalloprotein functions in designed and native scaffolds. Trends Biochem. Sci. 44, 1022–1040 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Mills, J. H. et al. Computational design of a homotrimeric metalloprotein with a trisbipyridyl core. PNAS 113, 15012–15017 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Drienovská, I., Rioz-Martínez, A., Draksharapu, A. & Roelfes, G. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6, 770–776 (2015).

    PubMed 

    Google Scholar 

  • Luo, X., Wang, T. S. A., Zhang, Y., Wang, F. & Schultz, P. G. Stabilizing protein motifs with a genetically encoded metal-ion chelator. Cell Chem. Biol. 23, 1098–1102 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, M. & Song, W. J. Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability. Nat. Commun. 10, 5545 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Holm, R. H., Kennepohl, P. & Solomon, E. I. Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239–2314 (1996).

    CAS 
    PubMed 

    Google Scholar 

  • Upp, D. M. et al. Engineering dirhodium artificial metalloenzymes for diazo coupling cascade reactions. Angew. Chem. Int. Ed. 60, 23672–23677 (2021).

    CAS 

    Google Scholar 

  • Bryson, D. I. et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat. Chem. Biol. 13, 1253–1260 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Amiram, M. et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33, 1272–1279 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tharp, J. M., Vargas-Rodriguez, O., Schepartz, A. & Söll, D. Genetic encoding of three distinct noncanonical amino acids using reprogrammed initiator and nonsense codons. ACS Chem. Biol. 16, 766–774 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chatterjee, A., Sun, S. B., Furman, J. L., Xiao, H. & Schultz, P. G. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52, 1828–1837 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Torre, D. D. L. & Chin, J. W. Reprogramming the genetic code. Nat. Rev. Genet. 22, 169–184 (2020).

    PubMed 

    Google Scholar 

  • Kofman, C., Lee, J. & Jewett, M. C. Engineering molecular translation systems. Cell Syst. 12, 593–607 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Pozzo, T., Akter, F., Nomura, Y., Louie, A. Y. & Yokobayashi, Y. Firefly luciferase mutant with enhanced activity and thermostability. ACS Omega 3, 2628–2633 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link