Davidi, D., Longo, L. M., Jabłońska, J., Milo, R. & Tawfik, D. S. A Bird’s-eye view of enzyme evolution: chemical, physicochemical, and physiological considerations. Chem. Rev. 118, 8786–8797 (2018).
Google Scholar
Cornish-Bowden, A. Understanding allosteric and cooperative interactions in enzymes. FEBS J. 281, 621–632 (2014).
Google Scholar
Claaßen, C., Gerlach, T. & Rother, D. Stimulus‐responsive regulation of enzyme activity for one‐step and multi‐step syntheses. Adv. Synth. Catal. 361, 2387–2401 (2019).
Google Scholar
Bell, E. L. et al. Biocatalysis. Nat. Rev. Methods Prim. 1, 46 (2021).
Google Scholar
Devine, P. N. et al. Extending the application of biocatalysis to meet the challenges of drug development. Nat. Rev. Chem. 2, 409–421 (2018).
Taylor, N. D. et al. Engineering an allosteric transcription factor to respond to new ligands. Nat. Methods 13, 177–183 (2016).
Google Scholar
Buller, A. R. et al. Directed evolution of the tryptophan synthase β-subunit for stand-alone function recapitulates allosteric activation. PNAS 112, 14599–14604 (2015).
Google Scholar
Jiménez-Osés, G. et al. The role of distant mutations and allosteric regulation on LovD active site dynamics. Nat. Chem. Biol. 10, 431–436 (2014).
Google Scholar
Otten, R. et al. Rescue of conformational dynamics in enzyme catalysis by directed evolution. Nat. Commun. 9, 1314 (2018).
Google Scholar
Leander, M., Yuan, Y., Meger, A., Cui, Q. & Raman, S. Functional plasticity and evolutionary adaptation of allosteric regulation. PNAS 117, 25445–25454 (2020).
Google Scholar
Ali, M., Ishqi, H. M. & Husain, Q. Enzyme engineering: reshaping the biocatalytic functions. Biotechnol. Bioeng. 117, 1877–1894 (2020).
Google Scholar
Rigoldi, F., Donini, S., Redaelli, A., Parisini, E. & Gautieri, A. Review: engineering of thermostable enzymes for industrial applications. APL Bioeng. 2, 11501 (2018).
Stein, V. & Alexandrov, K. Synthetic protein switches: design principles and applications. Trends Biotechnol. 33, 101–110 (2015).
Google Scholar
Guo, Z. et al. Generalizable protein biosensors based on synthetic switch modules. JACS 141, 8128–8135 (2020).
Adamson, H. & Jeuken, L. J. C. Engineering protein switches for rapid diagnostic tests. ACS Sens. 5, 3001–3012 (2020).
Google Scholar
Guo, Z. et al. Engineering PQQ-glucose dehydrogenase into an allosteric electrochemical Ca2+ sensor. Chem. Commun. 52, 485–488 (2016).
Google Scholar
Farhana, I., Hossain, M. N., Suzuki, K., Matsuda, T. & Nagai, T. Genetically encoded fluorescence/bioluminescence bimodal indicators for Ca2+ imaging. ACS Sens. 4, 1825–1834 (2019).
Google Scholar
Nguyen, L. P. et al. Establishment of a nanobit-based cytosolic Ca2+ sensor by optimizing calmodulin-binding motif and protein expression levels. Mol. Cells 43, 909–920 (2020).
Google Scholar
Dueber, J. E., Yeh, B. J., Chak, K. & Lim, W. A. Reprogramming control of an allosteric signaling switch through modular recombination. Science 301, 1904–1908 (2003).
Google Scholar
Raman, S., Taylor, N., Genuth, N., Fields, S. & Church, G. M. Engineering allostery. Trends Genet. 30, 521–528 (2014).
Google Scholar
Fan, Y., Cross, P. J., Jameson, G. B. & Parker, E. J. Exploring modular allostery via interchangeable regulatory domains. PNAS 115, 3006–3011 (2018).
Google Scholar
Repina, N. A., Rosenbloom, A., Mukherjee, A., Schaffer, D. V. & Kane, R. S. At light speed: advances in optogenetic systems for regulating cell signaling and behavior. Annu. Rev. Chem. Biomol. Eng. 8, 13–39 (2017).
Google Scholar
Pudasaini, A., El-Arab, K. K. & Zoltowski, B. D. LOV-based optogenetic devices: Light-driven modules to impart photoregulated control of cellular signaling. Front. Mol. Biosci. 2, 18 (2015).
Google Scholar
Strickland, D. et al. TULIPs: tunable, light-controlled interacting protein tags for cell biology. Nat. Methods 9, 379–384 (2012).
Google Scholar
Wang, H. et al. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13, 755–758 (2016).
Google Scholar
Kennedy, M. J. et al. Rapid blue-light–mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).
Google Scholar
Dagliyan, O., Dokholyan, N. V. & Hahn, K. M. Engineering proteins for allosteric control by light or ligands. Nat. Protoc. 14, 1863–1883 (2019).
Google Scholar
Shaaya, M. et al. Light-regulated allosteric switch enables temporal and subcellular control of enzyme activity. Elife 9, 1 (2020).
Tullman, J., Nicholes, N., Dumont, M. R., Ribeiro, L. F. & Ostermeier, M. Enzymatic protein switches built from paralogous input domains. Biotechnol. Bioeng. 113, 852–858 (2016).
Google Scholar
Langan, R. A. et al. De novo design of bioactive protein switches. Nature 572, 205–210 (2019).
Google Scholar
Quijano-Rubio, A. et al. De novo design of modular and tunable protein biosensors. Nature 591, 482–487 (2021).
Google Scholar
Furikado, Y. et al. Universal reaction mechanism of boronic acids with diols in aqueous solution: kinetics and the basic concept of a conditional formation constant. Chem. Eur. J. 20, 13194–13202 (2014).
Google Scholar
Bhat, V. T. et al. Nucleophilic catalysis of acylhydrazone equilibration for protein-directed dynamic covalent chemistry. Nat. Chem. 2, 490–497 (2010).
Google Scholar
Kaes, C., Katz, A. & Hosseini, M. W. Bipyridine: the most widely used ligand. a review of molecules comprising at least two 2,2‘-bipyridine units. Chem. Rev. 100, 3553–3590 (2000).
Google Scholar
Young, D. D. & Schultz, P. G. Playing with the Molecules of Life. ACS Chem. Biol. 13, 854–870 (2018).
Google Scholar
Tavassoli, A., Hamilton, A. D., Spring, D. R., Beharry, A. A. & Woolley, G. A. Azobenzene photoswitches for biomolecules. Chem. Soc. Rev. 40, 4422–4437 (2011).
Hoppmann, C., Maslennikov, I., Choe, S. & Wang, L. In situ formation of an azo bridge on proteins controllable by visible light. JACS 137, 11218–11221 (2015).
Google Scholar
Cao, W. et al. A general supramolecular approach to regulate protein functions by Cucurbit[7]uril and unnatural amino acid recognition. Angew. Chem. Int. Ed. 60, 11196–11200 (2021).
Google Scholar
Luo, J., Liu, Q., Morihiro, K. & Deiters, A. Small-molecule control of protein function through Staudinger reduction. Nat. Chem. 8, 1027–1034 (2016).
Google Scholar
Li, J., Jia, S. & Chen, P. R. Diels-Alder reaction-triggered bioorthogonal protein decaging in living cells. Nat. Chem. Biol. 10, 1003–1005 (2014).
Google Scholar
Kneuttinger, A. C. et al. Light regulation of enzyme allostery through photo-responsive unnatural amino acids. Cell Chem. Biol. 26, 1501–1514 (2019). e9.
Google Scholar
Kneuttinger, A. C. et al. Significance of the protein interface configuration for allostery in imidazole glycerol phosphate synthase. Biochemistry 59, 2729–2742 (2020).
Google Scholar
Des Soye, B. J., Gerbasi, V. R., Thomas, P. M., Kelleher, N. L. & Jewett, M. C. A highly productive, one-pot cell-free protein synthesis platform based on genomically recoded Escherichia coli. Cell Chem. Biol. 26, 1743–1754 (2019). e9.
Google Scholar
Reyes-Caballero, H., Campanello, G. C. & Giedroc, D. P. Metalloregulatory proteins: metal selectivity and allosteric switching. Biophys. Chem. 156, 103–114 (2011).
Google Scholar
Harris, M. N., Madura, J. D., Ming, L. J. & Harwood, V. J. Kinetic and mechanistic studies of prolyl oligopeptidase from the Hyperthermophile Pyrococcus furiosus. J. Biol. Chem. 276, 19130–19137 (2001).
Ellis-Guardiola, K. et al. Crystal structure and conformational dynamics of Pyrococcus furiosus Prolyl Oligopeptidase. Biochemistry 58, 1616–1626 (2019).
Google Scholar
Xie, J., Liu, W. & Schultz, P. G. A Genetically Encoded Bidentate. Met.-Binding Amino Acid. Angew. Chem. Int. Ed. 46, 9239–9242 (2007).
Google Scholar
Silverman, A. D., Karim, A. S. & Jewett, M. C. Cell-free gene expression: an expanded repertoire of applications. Nat. Rev. Genet. 21, 151–170 (2020).
Google Scholar
Martin, R. W. et al. Cell-free protein synthesis from genomically recoded bacteria enables multisite incorporation of noncanonical amino acids. Nat. Commun. 9, 1203 (2018).
Google Scholar
Hammerling, M. J., Krüger, A. & Jewett, M. C. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 48, 1068–1083 (2020).
Google Scholar
Smith, R. M. & Martell, A. E. Critical Stability Constants Volume 2: Amines 235-237 (Plenum Press, New York, 1975).
Smith, R. M. & Martell, A. E. Critical Stability Constants Second Supplement 96-99 (Plenum Press, New York, 1989).
Kafader, J. O. et al. Native vs denatured: an in depth investigation of Charge State and isotope distributions. J. Am. Soc. Mass Spectrom. 31, 574–581 (2020).
Google Scholar
Vander Griend, D. A., Bediako, D. K., DeVries, M. J., DeJong, N. A. & Heeringa, L. P. Detailed spectroscopic, thermodynamic, and kinetic characterization of nickel(ii) complexes with 2,2‘-Bipyridine and 1,10-Phenanthroline Attained via Equilibrium-Restricted Factor Analysis. Inorg. Chem. 47, 656–662 (2007).
Google Scholar
Mason, S. F. The electronic spectra and optical activity of phenanthroline and dipyridyl metal complexes. Inorg. Chim. Acta Rev. 2, 89–109 (1968).
Google Scholar
Meyer, T. J. Photochemistry of metal coordination complexes: metal to ligand charge transfer excited states. Pure Appl. Chem. 58, 1193–1206 (1986).
Google Scholar
Gillard, R. D. Progress in Inorganic Chemistry, Volume 7: The Cotton Effect in Coordination Compounds, 215–276 (John Wiley & Sons Inc., Hoboken, 1966).
Thorne, N., Inglese, J. & Auld, D. S. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem. Biol. 17, 646–657 (2010).
Google Scholar
Sundlov, J. A., Fontaine, D. M., Southworth, T. L., Branchini, B. R. & Gulick, A. M. Crystal structure of firefly luciferase in a second catalytic conformation supports a domain alternation mechanism. Biochemistry 51, 6493–6495 (2012).
Google Scholar
Conti, E., Franks, N. P. & Brick, P. Crystal structure of firefly luciferase throws light on a superfamily of adenylate-forming enzymes. Structure 4, 287–298 (1996).
Google Scholar
Zhang, C. et al. Reversible Ca 2+ switch of an engineered allosteric antioxidant Selenoenzyme. Angew. Chem. Int. Ed. 53, 13536–13539 (2014).
Google Scholar
Nastri, F. et al. Engineering metalloprotein functions in designed and native scaffolds. Trends Biochem. Sci. 44, 1022–1040 (2019).
Google Scholar
Mills, J. H. et al. Computational design of a homotrimeric metalloprotein with a trisbipyridyl core. PNAS 113, 15012–15017 (2016).
Google Scholar
Drienovská, I., Rioz-Martínez, A., Draksharapu, A. & Roelfes, G. Novel artificial metalloenzymes by in vivo incorporation of metal-binding unnatural amino acids. Chem. Sci. 6, 770–776 (2015).
Google Scholar
Luo, X., Wang, T. S. A., Zhang, Y., Wang, F. & Schultz, P. G. Stabilizing protein motifs with a genetically encoded metal-ion chelator. Cell Chem. Biol. 23, 1098–1102 (2016).
Google Scholar
Yang, M. & Song, W. J. Diverse protein assembly driven by metal and chelating amino acids with selectivity and tunability. Nat. Commun. 10, 5545 (2019).
Google Scholar
Holm, R. H., Kennepohl, P. & Solomon, E. I. Structural and functional aspects of metal sites in biology. Chem. Rev. 96, 2239–2314 (1996).
Google Scholar
Upp, D. M. et al. Engineering dirhodium artificial metalloenzymes for diazo coupling cascade reactions. Angew. Chem. Int. Ed. 60, 23672–23677 (2021).
Google Scholar
Bryson, D. I. et al. Continuous directed evolution of aminoacyl-tRNA synthetases. Nat. Chem. Biol. 13, 1253–1260 (2017).
Google Scholar
Amiram, M. et al. Evolution of translation machinery in recoded bacteria enables multi-site incorporation of nonstandard amino acids. Nat. Biotechnol. 33, 1272–1279 (2015).
Google Scholar
Tharp, J. M., Vargas-Rodriguez, O., Schepartz, A. & Söll, D. Genetic encoding of three distinct noncanonical amino acids using reprogrammed initiator and nonsense codons. ACS Chem. Biol. 16, 766–774 (2021).
Google Scholar
Chatterjee, A., Sun, S. B., Furman, J. L., Xiao, H. & Schultz, P. G. A versatile platform for single- and multiple-unnatural amino acid mutagenesis in Escherichia coli. Biochemistry 52, 1828–1837 (2013).
Google Scholar
Torre, D. D. L. & Chin, J. W. Reprogramming the genetic code. Nat. Rev. Genet. 22, 169–184 (2020).
Google Scholar
Kofman, C., Lee, J. & Jewett, M. C. Engineering molecular translation systems. Cell Syst. 12, 593–607 (2021).
Google Scholar
Pozzo, T., Akter, F., Nomura, Y., Louie, A. Y. & Yokobayashi, Y. Firefly luciferase mutant with enhanced activity and thermostability. ACS Omega 3, 2628–2633 (2018).
Google Scholar

