Li, W. et al. A multiallelic indel in the promoter region of the Cyclin-dependent kinase inhibitor 3 gene is significantly associated with body weight and carcass traits in chickens. Poult. Sci. 98, 556–565. https://doi.org/10.3382/ps/pey404 (2019).
Google Scholar
Molkentin, J. D. & Olson, E. N. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 6, 445–453. https://doi.org/10.1016/s0959-437x(96)80066-9 (1996).
Google Scholar
Yin, H. D. et al. Housing system influences abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles. Poult. Sci. 93, 1337–1343. https://doi.org/10.3382/ps.2013-03555 (2014).
Google Scholar
Bustin, S. A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 29, 23–39. https://doi.org/10.1677/jme.0.0290023 (2002).
Google Scholar
Yuan, J. S., Reed, A., Chen, F. & Stewart, C. N. Jr. Statistical analysis of real-time PCR data. BMC Bioinform. 7, 85. https://doi.org/10.1186/1471-2105-7-85 (2006).
Google Scholar
Zhang, J. et al. Identification of suitable reference genes for quantitative RT-PCR during 3T3-L1 adipocyte differentiation. Int. J. Mol. Med. 33, 1209–1218 (2014).
Google Scholar
Kishore, A. et al. Selection of stable reference genes in heat stressed peripheral blood mononuclear cells of tropically adapted Indian cattle and buffaloes. Mol. Cell Probes 27, 140–144. https://doi.org/10.1016/j.mcp.2013.02.003 (2013).
Google Scholar
Bustin, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. https://doi.org/10.1373/clinchem.2008.112797 (2009).
Google Scholar
Li, Y., Chen, W., Wang, Q., Wang, N. & Wu, Y. F. Assessment of reference genes for quantitative real-time PCR gene expression normalization in periwinkle during Wheat Blue Dwarf phytoplasma infection. Australas. Plant Pathol. 43, 477–485 (2014).
Google Scholar
Niu, G. et al. Identifying suitable reference genes for gene expression analysis in developing skeletal muscle in pigs. PeerJ 4, e2428. https://doi.org/10.7717/peerj.2428 (2016).
Google Scholar
Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, Research0034. https://doi.org/10.1186/gb-2002-3-7-research0034 (2002).
Google Scholar
Andersen, C. L., Jensen, J. L. & Orntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Can. Res. 64, 5245–5250. https://doi.org/10.1158/0008-5472.can-04-0496 (2004).
Google Scholar
Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotech. Lett. 26, 509–515. https://doi.org/10.1023/b:bile.0000019559.84305.47 (2004).
Google Scholar
Bendris, N. et al. Cyclin A2: A genuine cell cycle regulator?. Biomol. Concepts 3, 535–543 (2012).
Google Scholar
Abdelhalim, et al. Cyclin A2: At the crossroads of cell cycle and cell invasion. World J. Biol. Chem. 6, 346–350 (2015).
Google Scholar
Bentzinger, C., Yu, X. W. & Rudnicki, M. A. Building muscle: Molecular regulation of myogenesis. Cold Spring Harb. Perspect. Biol. 4, 441–441 (2012).
Google Scholar
Ustanina, S., Carvajal, J., Rigby, P. & Braun, T. The myogenic factor Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification. Stem Cells 25, 2006–2016 (2010).
Google Scholar
Jeon, R. H. et al. PPIA, HPRT1, and YWHAZ genes are suitable for normalization of mRNA expression in long-term expanded human mesenchymal stem cells. Biomed. Res. Int. 2019, 3093545–3093545 (2019).
Google Scholar
Palombella, S. et al. Identification of reference genes for qPCR analysis during hASC long culture maintenance. PLoS ONE 12, e0170918. https://doi.org/10.1371/journal.pone.0170918 (2017).
Google Scholar
Dheda, K. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37, 118–119 (2004).
Google Scholar
Nishimura, M., Nikawa, T., Kawano, Y., Nakayama, M. & Ikeda, M. Effects of dimethyl sulfoxide and dexamethasone on mRNA expression of housekeeping genes in cultures of C2C12 myotubes. Biochem. Biophys. Res. Commun. 367, 603–608. https://doi.org/10.1016/j.bbrc.2008.01.006 (2008).
Google Scholar
Masilamani, T. J., Loiselle, J. J. & Sutherland, L. C. Assessment of reference genes for real-time quantitative PCR gene expression normalization during C2C12 and H9c2 skeletal muscle differentiation. Mol. Biotechnol. 56, 329–339. https://doi.org/10.1007/s12033-013-9712-2 (2014).
Google Scholar
Saremi, B., Sauerwein, H., Danicke, S. & Mielenz, M. Technical note: Identification of reference genes for gene expression studies in different bovine tissues focusing on different fat depots. J. Dairy Sci. 95, 3131–3138. https://doi.org/10.3168/jds.2011-4803 (2012).
Google Scholar
Najafpanah, M. J., Sadeghi, M. & Bakhtiarizadeh, M. R. Reference genes selection for quantitative real-time PCR using RankAggreg method in different tissues of Capra hircus. PLoS ONE 8, e83041. https://doi.org/10.1371/journal.pone.0083041 (2013).
Google Scholar
Thomas, K. C. et al. Evidence based selection of commonly used RT-qPCR reference genes for the analysis of mouse skeletal muscle. PLoS ONE 9, e88653. https://doi.org/10.1371/journal.pone.0088653 (2014).
Google Scholar
Luchsinger, C. et al. Stability of reference genes for normalization of reverse transcription quantitative real-time PCR (RT-qPCR) data in bovine blastocysts produced by IVF, ICSI and SCNT. Zygote (Cambridge, England) 22, 505–512. https://doi.org/10.1017/s0967199413000099 (2014).
Google Scholar
Lesage-Padilla, A. et al. Maternal metabolism affects endometrial expression of oxidative stress and FOXL2 genes in cattle. PLoS ONE 12, e0189942. https://doi.org/10.1371/journal.pone.0189942 (2017).
Google Scholar
Macabelli, C. H. et al. Reference gene selection for gene expression analysis of oocytes collected from dairy cattle and buffaloes during winter and summer. PLoS ONE 9, e93287. https://doi.org/10.1371/journal.pone.0093287 (2014).
Google Scholar
Schoen, K., Plendl, J., Gabler, C. & Kaessmeyer, S. Identification of stably expressed reference genes for RT-qPCR data normalization in defined localizations of cyclic bovine ovaries. Anat. Histol. Embryol. 44, 200–211. https://doi.org/10.1111/ahe.12128 (2015).
Google Scholar
Rekawiecki, R., Rutkowska, J. & Kotwica, J. Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum. Reprod. Biol. 12, 362–367. https://doi.org/10.1016/j.repbio.2012.10.010 (2012).
Google Scholar
Rekawiecki, R., Kowalik, M. K. & Kotwica, J. Validation of housekeeping genes for studying differential gene expression in the bovine myometrium. Acta Vet. Hung. 61, 505–516. https://doi.org/10.1556/AVet.2013.037 (2013).
Google Scholar
Jang, S. J. et al. TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase chain reaction study in bovine mesenchymal stem cells. Asian-Australas J. Anim. Sci. 33, 2021–2030. https://doi.org/10.5713/ajas.20.0238 (2020).
Google Scholar
Cheng, L. et al. Identification of reliable reference genes for expression studies in maternal reproductive tissues and foetal tissues of pregnant cows. Reprod. Domest. Anim. 55, 1554–1564. https://doi.org/10.1111/rda.13808 (2020).
Google Scholar
Li, X., Yang, Q., Bai, J., Yang, Y. & Wang, Y. Identification of optimal reference genes for quantitative PCR studies on human mesenchymal stem cells. Mol. Med. Rep. 11, 1304–1311 (2015).
Google Scholar
Mitra, T., Bilic, I., Hess, M. & Liebhart, D. The 60S ribosomal protein L13 is the most preferable reference gene to investigate gene expression in selected organs from turkeys and chickens, in context of different infection models. Vet. Res. 47, 105 (2016).
Google Scholar
Thorrez, L. et al. Using ribosomal protein genes as reference: A tale of caution. PLoS ONE 3, e1854. https://doi.org/10.1371/journal.pone.0001854 (2008).
Google Scholar
Bonnet, M., Bernard, L., Bes, S. & Leroux, C. Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. Anim. Int. J. Anim. Biosci. 7, 1344–1353 (2013).
Google Scholar
Caetano, L. C., Miranda-Furtado, C. L., Batista, L. A., Pitangui-Molina, C. P. & Rosa-E-Silva, A. Validation of reference genes for gene expression studies in bovine oocytes and cumulus cells derived from in vitro maturation. Anim. Reprod. 16, 290–296 (2019).
Google Scholar
Gong, H. et al. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. Sci. Rep. 6, 38513. https://doi.org/10.1038/srep38513 (2016).
Google Scholar
Ragni, E., Viganò, M., Rebulla, P., Giordano, R. & Lazzari, L. What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: How to choose the most reliable housekeeping genes. J. Cell Mol. Med. 17, 168–180 (2013).
Google Scholar
Kozera, B. & Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 54, 391–406 (2013).
Google Scholar
Wang, Y. N. et al. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast. PLoS ONE 13, e0196255. https://doi.org/10.1371/journal.pone.0196255 (2018).
Google Scholar
Divari, S., Berio, E., Biolatti, B. & Cannizzo, F. T. Reference gene selection and prednisolone target gene expression in adipose tissues of friesian cattle. J. Agric. Food Chem. 65, 11140–11145 (2017).
Google Scholar
Cao, K. X. et al. Cold exposure induces the acquisition of brown adipocyte gene expression profiles in cattle inguinal fat normalized with a new set of reference genes for qRT-PCR. Res. Vet. Sci. 114, 1–5. https://doi.org/10.1016/j.rvsc.2017.02.021 (2017).
Google Scholar
Roberts, S. L., Lancaster, P. A., DeSilva, U., Horn, G. W. & Krehbiel, C. R. Coordinated gene expression between skeletal muscle and intramuscular adipose tissue in growing beef cattle. J. Anim. Sci. 93, 4302–4311. https://doi.org/10.2527/jas.2015-8886 (2015).
Google Scholar
Schering, L., Albrecht, E., Komolka, K., Kuhn, C. & Maak, S. Increased expression of thyroid hormone responsive protein (THRSP) is the result but not the cause of higher intramuscular fat content in cattle. Int. J. Biol. Sci. 13, 532–544. https://doi.org/10.7150/ijbs.18775 (2017).
Google Scholar
Baddela, V. S., Baufeld, A., Yenuganti, V. R., Vanselow, J. & Singh, D. Suitable housekeeping genes for normalization of transcript abundance analysis by real-time RT-PCR in cultured bovine granulosa cells during hypoxia and differential cell plating density. Reprod. Biol. Endocrinol. 12, 1–7 (2014).
Google Scholar

