Preloader

Screening and validation of reference genes for qRT-PCR of bovine skeletal muscle-derived satellite cells

  • Li, W. et al. A multiallelic indel in the promoter region of the Cyclin-dependent kinase inhibitor 3 gene is significantly associated with body weight and carcass traits in chickens. Poult. Sci. 98, 556–565. https://doi.org/10.3382/ps/pey404 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Molkentin, J. D. & Olson, E. N. Defining the regulatory networks for muscle development. Curr. Opin. Genet. Dev. 6, 445–453. https://doi.org/10.1016/s0959-437x(96)80066-9 (1996).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yin, H. D. et al. Housing system influences abundance of Pax3 and Pax7 in postnatal chicken skeletal muscles. Poult. Sci. 93, 1337–1343. https://doi.org/10.3382/ps.2013-03555 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bustin, S. A. Quantification of mRNA using real-time reverse transcription PCR (RT-PCR): Trends and problems. J. Mol. Endocrinol. 29, 23–39. https://doi.org/10.1677/jme.0.0290023 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yuan, J. S., Reed, A., Chen, F. & Stewart, C. N. Jr. Statistical analysis of real-time PCR data. BMC Bioinform. 7, 85. https://doi.org/10.1186/1471-2105-7-85 (2006).

    CAS 
    Article 

    Google Scholar 

  • Zhang, J. et al. Identification of suitable reference genes for quantitative RT-PCR during 3T3-L1 adipocyte differentiation. Int. J. Mol. Med. 33, 1209–1218 (2014).

    CAS 
    Article 

    Google Scholar 

  • Kishore, A. et al. Selection of stable reference genes in heat stressed peripheral blood mononuclear cells of tropically adapted Indian cattle and buffaloes. Mol. Cell Probes 27, 140–144. https://doi.org/10.1016/j.mcp.2013.02.003 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Bustin, S. A. et al. The MIQE guidelines: Minimum information for publication of quantitative real-time PCR experiments. Clin. Chem. 55, 611–622. https://doi.org/10.1373/clinchem.2008.112797 (2009).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Li, Y., Chen, W., Wang, Q., Wang, N. & Wu, Y. F. Assessment of reference genes for quantitative real-time PCR gene expression normalization in periwinkle during Wheat Blue Dwarf phytoplasma infection. Australas. Plant Pathol. 43, 477–485 (2014).

    Article 

    Google Scholar 

  • Niu, G. et al. Identifying suitable reference genes for gene expression analysis in developing skeletal muscle in pigs. PeerJ 4, e2428. https://doi.org/10.7717/peerj.2428 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vandesompele, J. et al. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3, Research0034. https://doi.org/10.1186/gb-2002-3-7-research0034 (2002).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Andersen, C. L., Jensen, J. L. & Orntoft, T. F. Normalization of real-time quantitative reverse transcription-PCR data: A model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Can. Res. 64, 5245–5250. https://doi.org/10.1158/0008-5472.can-04-0496 (2004).

    CAS 
    Article 

    Google Scholar 

  • Pfaffl, M. W., Tichopad, A., Prgomet, C. & Neuvians, T. P. Determination of stable housekeeping genes, differentially regulated target genes and sample integrity: BestKeeper–Excel-based tool using pair-wise correlations. Biotech. Lett. 26, 509–515. https://doi.org/10.1023/b:bile.0000019559.84305.47 (2004).

    CAS 
    Article 

    Google Scholar 

  • Bendris, N. et al. Cyclin A2: A genuine cell cycle regulator?. Biomol. Concepts 3, 535–543 (2012).

    CAS 
    Article 

    Google Scholar 

  • Abdelhalim, et al. Cyclin A2: At the crossroads of cell cycle and cell invasion. World J. Biol. Chem. 6, 346–350 (2015).

    Article 

    Google Scholar 

  • Bentzinger, C., Yu, X. W. & Rudnicki, M. A. Building muscle: Molecular regulation of myogenesis. Cold Spring Harb. Perspect. Biol. 4, 441–441 (2012).

    Article 

    Google Scholar 

  • Ustanina, S., Carvajal, J., Rigby, P. & Braun, T. The myogenic factor Myf5 supports efficient skeletal muscle regeneration by enabling transient myoblast amplification. Stem Cells 25, 2006–2016 (2010).

    Article 

    Google Scholar 

  • Jeon, R. H. et al. PPIA, HPRT1, and YWHAZ genes are suitable for normalization of mRNA expression in long-term expanded human mesenchymal stem cells. Biomed. Res. Int. 2019, 3093545–3093545 (2019).

    Article 

    Google Scholar 

  • Palombella, S. et al. Identification of reference genes for qPCR analysis during hASC long culture maintenance. PLoS ONE 12, e0170918. https://doi.org/10.1371/journal.pone.0170918 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dheda, K. Validation of housekeeping genes for normalizing RNA expression in real-time PCR. Biotechniques 37, 118–119 (2004).

    Article 

    Google Scholar 

  • Nishimura, M., Nikawa, T., Kawano, Y., Nakayama, M. & Ikeda, M. Effects of dimethyl sulfoxide and dexamethasone on mRNA expression of housekeeping genes in cultures of C2C12 myotubes. Biochem. Biophys. Res. Commun. 367, 603–608. https://doi.org/10.1016/j.bbrc.2008.01.006 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Masilamani, T. J., Loiselle, J. J. & Sutherland, L. C. Assessment of reference genes for real-time quantitative PCR gene expression normalization during C2C12 and H9c2 skeletal muscle differentiation. Mol. Biotechnol. 56, 329–339. https://doi.org/10.1007/s12033-013-9712-2 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Saremi, B., Sauerwein, H., Danicke, S. & Mielenz, M. Technical note: Identification of reference genes for gene expression studies in different bovine tissues focusing on different fat depots. J. Dairy Sci. 95, 3131–3138. https://doi.org/10.3168/jds.2011-4803 (2012).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Najafpanah, M. J., Sadeghi, M. & Bakhtiarizadeh, M. R. Reference genes selection for quantitative real-time PCR using RankAggreg method in different tissues of Capra hircus. PLoS ONE 8, e83041. https://doi.org/10.1371/journal.pone.0083041 (2013).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Thomas, K. C. et al. Evidence based selection of commonly used RT-qPCR reference genes for the analysis of mouse skeletal muscle. PLoS ONE 9, e88653. https://doi.org/10.1371/journal.pone.0088653 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Luchsinger, C. et al. Stability of reference genes for normalization of reverse transcription quantitative real-time PCR (RT-qPCR) data in bovine blastocysts produced by IVF, ICSI and SCNT. Zygote (Cambridge, England) 22, 505–512. https://doi.org/10.1017/s0967199413000099 (2014).

    CAS 
    Article 

    Google Scholar 

  • Lesage-Padilla, A. et al. Maternal metabolism affects endometrial expression of oxidative stress and FOXL2 genes in cattle. PLoS ONE 12, e0189942. https://doi.org/10.1371/journal.pone.0189942 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Macabelli, C. H. et al. Reference gene selection for gene expression analysis of oocytes collected from dairy cattle and buffaloes during winter and summer. PLoS ONE 9, e93287. https://doi.org/10.1371/journal.pone.0093287 (2014).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schoen, K., Plendl, J., Gabler, C. & Kaessmeyer, S. Identification of stably expressed reference genes for RT-qPCR data normalization in defined localizations of cyclic bovine ovaries. Anat. Histol. Embryol. 44, 200–211. https://doi.org/10.1111/ahe.12128 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rekawiecki, R., Rutkowska, J. & Kotwica, J. Identification of optimal housekeeping genes for examination of gene expression in bovine corpus luteum. Reprod. Biol. 12, 362–367. https://doi.org/10.1016/j.repbio.2012.10.010 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Rekawiecki, R., Kowalik, M. K. & Kotwica, J. Validation of housekeeping genes for studying differential gene expression in the bovine myometrium. Acta Vet. Hung. 61, 505–516. https://doi.org/10.1556/AVet.2013.037 (2013).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jang, S. J. et al. TATA box binding protein and ribosomal protein 4 are suitable reference genes for normalization during quantitative polymerase chain reaction study in bovine mesenchymal stem cells. Asian-Australas J. Anim. Sci. 33, 2021–2030. https://doi.org/10.5713/ajas.20.0238 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, L. et al. Identification of reliable reference genes for expression studies in maternal reproductive tissues and foetal tissues of pregnant cows. Reprod. Domest. Anim. 55, 1554–1564. https://doi.org/10.1111/rda.13808 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Li, X., Yang, Q., Bai, J., Yang, Y. & Wang, Y. Identification of optimal reference genes for quantitative PCR studies on human mesenchymal stem cells. Mol. Med. Rep. 11, 1304–1311 (2015).

    CAS 
    Article 

    Google Scholar 

  • Mitra, T., Bilic, I., Hess, M. & Liebhart, D. The 60S ribosomal protein L13 is the most preferable reference gene to investigate gene expression in selected organs from turkeys and chickens, in context of different infection models. Vet. Res. 47, 105 (2016).

    Article 

    Google Scholar 

  • Thorrez, L. et al. Using ribosomal protein genes as reference: A tale of caution. PLoS ONE 3, e1854. https://doi.org/10.1371/journal.pone.0001854 (2008).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bonnet, M., Bernard, L., Bes, S. & Leroux, C. Selection of reference genes for quantitative real-time PCR normalisation in adipose tissue, muscle, liver and mammary gland from ruminants. Anim. Int. J. Anim. Biosci. 7, 1344–1353 (2013).

    CAS 
    Article 

    Google Scholar 

  • Caetano, L. C., Miranda-Furtado, C. L., Batista, L. A., Pitangui-Molina, C. P. & Rosa-E-Silva, A. Validation of reference genes for gene expression studies in bovine oocytes and cumulus cells derived from in vitro maturation. Anim. Reprod. 16, 290–296 (2019).

    Article 

    Google Scholar 

  • Gong, H. et al. Evaluation of candidate reference genes for RT-qPCR studies in three metabolism related tissues of mice after caloric restriction. Sci. Rep. 6, 38513. https://doi.org/10.1038/srep38513 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ragni, E., Viganò, M., Rebulla, P., Giordano, R. & Lazzari, L. What is beyond a qRT-PCR study on mesenchymal stem cell differentiation properties: How to choose the most reliable housekeeping genes. J. Cell Mol. Med. 17, 168–180 (2013).

    CAS 
    Article 

    Google Scholar 

  • Kozera, B. & Rapacz, M. Reference genes in real-time PCR. J. Appl. Genet. 54, 391–406 (2013).

    CAS 
    Article 

    Google Scholar 

  • Wang, Y. N. et al. Myocyte enhancer factor 2A promotes proliferation and its inhibition attenuates myogenic differentiation via myozenin 2 in bovine skeletal muscle myoblast. PLoS ONE 13, e0196255. https://doi.org/10.1371/journal.pone.0196255 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Divari, S., Berio, E., Biolatti, B. & Cannizzo, F. T. Reference gene selection and prednisolone target gene expression in adipose tissues of friesian cattle. J. Agric. Food Chem. 65, 11140–11145 (2017).

    CAS 
    Article 

    Google Scholar 

  • Cao, K. X. et al. Cold exposure induces the acquisition of brown adipocyte gene expression profiles in cattle inguinal fat normalized with a new set of reference genes for qRT-PCR. Res. Vet. Sci. 114, 1–5. https://doi.org/10.1016/j.rvsc.2017.02.021 (2017).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Roberts, S. L., Lancaster, P. A., DeSilva, U., Horn, G. W. & Krehbiel, C. R. Coordinated gene expression between skeletal muscle and intramuscular adipose tissue in growing beef cattle. J. Anim. Sci. 93, 4302–4311. https://doi.org/10.2527/jas.2015-8886 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Schering, L., Albrecht, E., Komolka, K., Kuhn, C. & Maak, S. Increased expression of thyroid hormone responsive protein (THRSP) is the result but not the cause of higher intramuscular fat content in cattle. Int. J. Biol. Sci. 13, 532–544. https://doi.org/10.7150/ijbs.18775 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Baddela, V. S., Baufeld, A., Yenuganti, V. R., Vanselow, J. & Singh, D. Suitable housekeeping genes for normalization of transcript abundance analysis by real-time RT-PCR in cultured bovine granulosa cells during hypoxia and differential cell plating density. Reprod. Biol. Endocrinol. 12, 1–7 (2014).

    Article 

    Google Scholar 

  • Source link