Preloader

Newcastle disease virus genotype VII gene expression in experimentally infected birds

  • Amarasinghe, G. K. et al. Taxonomy of the order mononegavirales: Update 2019. Adv. Virol. 164, 1967–1980. https://doi.org/10.1007/s00705-019-04247-4 (2019).

    CAS 

    Google Scholar 

  • Yusoff, K. & Tan, W. S. Newcastle disease virus: Macromolecules and opportunities. Avian Pathol. 30, 439–455 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • Swayne, D. E. & Glisson, J. R. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Matapneumovirus Infections. Diseases of poultry. 13th edn, 89–130 (Wiley, 2013).

  • Whelan, S., Barr, J. & Wertz, G. in Biology of Negative Strand RNA Viruses: The Power of Reverse Genetics 61–119 (Springer, 2004).

  • Ganar, K., Das, M., Sinha, S. & Kumar, S. Newcastle disease virus: current status and our understanding. Virus Res. 184, 71–81 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Park, M. S. et al. Newcastle disease virus (NDV)-based assay demonstrates interferon-antagonist activity for the NDV V protein and the Nipah virus V, W, and C proteins. J. Virol. 77, 1501–1511. https://doi.org/10.1128/jvi.77.2.1501-1511.2003 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Conzelmann, K. K. Nonsegmented negative-strand RNA viruses: genetics and manipulation of viral genomes. Annu. Rev. Genet. 32, 123–162. https://doi.org/10.1146/annurev.genet.32.1.123 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Wignall-Fleming, E. B. et al. Analysis of paramyxovirus transcription and replication by high-throughput sequencing. J. Virol. 93, 17 (2019).

    Google Scholar 

  • Cattaneo, R. et al. Altered transcription of a defective measles virus genome derived from a diseased human brain. EMBO J. 6, 681–688 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abraham, G. & Banerjee, A. K. Sequential transcription of the genes of vesicular stomatitis virus. Proc. Natl. Acad. Sci. USA. 73, 1504–1508. https://doi.org/10.1073/pnas.73.5.1504 (1976).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collins, P. L., Hightower, L. E. & Ball, L. A. Transcription and translation of Newcastle disease virus mRNA’s in vitro. J. Virol. 28, 324–336 (1978).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Noton, S. L. & Fearns, R. Initiation and regulation of paramyxovirus transcription and replication. Virology 479–480, 545–554. https://doi.org/10.1016/j.virol.2015.01.014 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Wright, P. J., Crameri, G. & Eaton, B. RNA synthesis during infection by Hendra virus: an examination by quantitative real-time PCR of RNA accumulation, the effect of ribavirin and the attenuation of transcription. Adv. Virol. 150, 521–532 (2005).

    CAS 

    Google Scholar 

  • Homann, H., Hofschneider, P. & Neubert, W. Sendai virus gene expression in lytically and persistently infected cells. Virology 177, 131–140 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • Cattaneo, R., Rebmann, G., Baczko, K., ter Meulen, V. & Billeter, M. A. Altered ratios of measles virus transcripts in diseased human brains. Virology 160, 523–526 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • Hodges, E. N., Heinrich, B. S. & Connor, J. H. A vesiculovirus showing a steepened transcription gradient and dominant trans-repression of virus transcription. J. Virol. 86, 8884–8889 (2012).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piedra, F.-A. et al. Non-gradient and genotype-dependent patterns of RSV gene expression. PLoS ONE 15, e0227558 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pagán, I., Holmes, E. C. & Simon-Loriere, E. Level of gene expression is a major determinant of protein evolution in the viral order Mononegavirales. J. Virol. 86, 5253–5263 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Albariño, C. G., Wiggleton Guerrero, L., Chakrabarti, A. K. & Nichol, S. T. Transcriptional analysis of viral mRNAs reveals common transcription patterns in cells infected by five different filoviruses. PLoS ONE 13, e0201827 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Deist, M. S. et al. Novel mechanisms revealed in the trachea transcriptome of resistant and susceptible chicken lines following infection with Newcastle disease virus. Clin. Vacc. Immunol. 24, 17 (2017).

    Google Scholar 

  • Peeters, B. P., De Leeuw, O. S., Koch, G. & Gielkens, A. L. Rescue of Newcastle disease virus from cloned cDNA: Evidence that cleavability of the fusion protein is a major determinant for virulence. Virology 73, 5001–5009 (1999).

    CAS 

    Google Scholar 

  • Susta, L., Miller, P. J., Afonso, C. L. & Brown, C. C. Clinicopathological characterization in poultry of three strains of Newcastle disease virus isolated from recent outbreaks. Vet. Pathol. 48, 349–360. https://doi.org/10.1177/0300985810375806 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Ecco, R. et al. In vivo transcriptional cytokine responses and association with clinical and pathological outcomes in chickens infected with different Newcastle disease virus isolates using formalin-fixed paraffin-embedded samples. Vet. Immunol. Immunopathol. 141, 221–229 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, Y. et al. Lack of detection of host associated differences in Newcastle disease viruses of genotype VIId isolated from chickens and geese. Virol. J. 9, 1–15 (2012).

    Google Scholar 

  • Cornax, I. et al. Newcastle disease virus fusion and haemagglutinin-neuraminidase proteins contribute to its macrophage host range. J. Gen. Virol. 94, 1189–1194. https://doi.org/10.1099/vir.0.048579-0 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kai, Y. et al. The M, F and HN genes of genotype VIId Newcastle disease virus are associated with the severe pathological changes in the spleen of chickens. Virol. J. 12, 1–10 (2015).

    Google Scholar 

  • Baczko, K., Carter, M. J., Billeter, M. & ter Meulen, V. Measles virus gene expression in subacute sclerosing panencephalitis. Virus Res. 1, 585–595 (1984).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Merino, R., Villegas, H., Quintana, J. A. & Calderon, N. Comparison of the virulence of pathogenic Newcastle disease viruses belonging to the same or different genotypes. Int. J. Poult. Sci. 10, 713–720 (2011).

    Google Scholar 

  • Martínez, M. J. et al. Role of Ebola virus VP30 in transcription reinitiation. J. Virol. 82, 12569–12573. https://doi.org/10.1128/jvi.01395-08 (2008).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Aljabr, W. et al. Investigating the influence of ribavirin on human respiratory syncytial virus RNA synthesis by using a high-resolution transcriptome sequencing approach. J. Virol. 90, 4876–4888 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Collins, P. L., Hightower, L. E. & Ball, L. A. Transcriptional map for Newcastle disease virus. J. Virol. 35, 682–693 (1980).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wynne, J. W. et al. Proteomics informed by transcriptomics reveals Hendra virus sensitizes bat cells to TRAIL-mediated apoptosis. Genome Biol. 15, 1–21 (2014).

    Google Scholar 

  • Deist, M. S. et al. Novel analysis of the Harderian gland transcriptome response to Newcastle disease virus in two inbred chicken lines. Sci. Rep. 8, 1–9 (2018).

    CAS 

    Google Scholar 

  • Dortmans, J. C., Rottier, P. J., Koch, G. & Peeters, B. P. The viral replication complex is associated with the virulence of Newcastle disease virus. J. Virol. 84, 10113–10120. https://doi.org/10.1128/JVI.00097-10 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ball, L. A., Pringle, C. R., Flanagan, B., Perepelitsa, V. P. & Wertz, G. W. Phenotypic consequences of rearranging the P, M, and G genes of vesicular stomatitis virus. J. Virol. 73, 4705–4712. https://doi.org/10.1128/jvi.73.6.4705-4712.1999 (1999).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wirblich, C. & Schnell, M. J. Rabies virus (RV) glycoprotein expression levels are not critical for pathogenicity of RV. J. Virol. 85, 697–704. https://doi.org/10.1128/jvi.01309-10 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Wertz, G. W., Perepelitsa, V. P. & Ball, L. A. Gene rearrangement attenuates expression and lethality of a nonsegmented negative strand RNA virus. Proc. Natl. Acad. Sci. 95, 3501–3506 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Novella, I. S., Ball, L. A. & Wertz, G. W. Fitness analyses of vesicular stomatitis strains with rearranged genomes reveal replicative disadvantages. J. Virol. 78, 9837–9841. https://doi.org/10.1128/JVI.78.18.9837-9841.2004 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhan, Y. et al. Newcastle Disease virus infection activates PI3K/Akt/mTOR and p38 MAPK/Mnk1 pathways to benefit viral mRNA translation via interaction of the viral NP protein and host eIF4E. PLoS Pathog. 16, e1008610. https://doi.org/10.1371/journal.ppat.1008610 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cheng, J.-H. et al. Newcastle disease virus NP and P proteins induce autophagy via the endoplasmic reticulum stress-related unfolded protein response. Sci. Rep. 6, 24721. https://doi.org/10.1038/srep24721 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rabiei, M. et al. Indicators of the molecular pathogenesis of virulent Newcastle disease virus in chickens revealed by transcriptomic profiling of spleen. Sci. Rep. 11, 1–14 (2021).

    Google Scholar 

  • Noda, T., Kolesnikova, L., Becker, S. & Kawaoka, Y. The importance of the NP: VP35 ratio in Ebola virus nucleocapsid formation. J. Infect. Dis. 204(Suppl 3), S878–S883. https://doi.org/10.1093/infdis/jir310 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Doan, P. T. K. et al. Genome sequences of newcastle disease virus strains from two outbreaks in Indonesia. Microbiol. Resour. Announ. 9, 23 (2020).

    Google Scholar 

  • Miller, P. J. et al. Effects of Newcastle disease virus vaccine antibodies on the shedding and transmission of challenge viruses. Dev. Comp. Immunol. 41, 505–513. https://doi.org/10.1016/j.dci.2013.06.007 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Alexander, D. J., Manvell, R. J. & Parsons, G. Newcastle disease virus (strain Herts 33/56) in tissues and organs of chickens infected experimentally. Avian Pathol. 35, 99–101. https://doi.org/10.1080/03079450600597444 (2006).

    PubMed 

    Google Scholar 

  • Hou, Y., Zhang, H., Miranda, L. & Lin, S. Serious overestimation in quantitative PCR by circular (supercoiled) plasmid standard: Microalgal pcna as the model gene. PLoS ONE 5, e9545 (2010).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, C., Kim, J., Shin, S. G. & Hwang, S. Absolute and relative QPCR quantification of plasmid copy number in Escherichia coli. J. Biotechnol. 123, 273–280. https://doi.org/10.1016/j.jbiotec.2005.11.014 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Andrews, S. Babraham Bioinformatics (Babraham Institute, 2010).

    Google Scholar 

  • Krueger, F. FelixKrueger/TrimGalore: v0.4.2 -https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ (2015).

  • Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: Rapid adapter trimming, identification, and read merging. BMC. Res. Notes 9, 88 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kim, D., Langmead, B. & Salzberg, S. L. HISAT: A fast spliced aligner with low memory requirements. Nat. Methods 12, 357–360 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, H. et al. The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Liao, Y., Smyth, G. K. & Shi, W. featureCounts: An efficient general purpose program for assigning sequence reads to genomic features. Bioinformatics 30, 923–930 (2014).

    CAS 

    Google Scholar 

  • Source link