Preloader

Ultrasound-controllable engineered bacteria for cancer immunotherapy

  • Zhou, S., Gravekamp, C., Bermudes, D. & Liu, K. Tumour-targeting bacteria engineered to fight cancer. Nat. Rev. Cancer 18, 727–743 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Weber, E. W., Maus, M. V. & Mackall, C. L. The emerging landscape of immune cell therapies. Cell 181, 46–62 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu, J. X., Upadhaya, S., Tatake, R., Barkalow, F. & Hubbard-Lucey, V. M. Cancer cell therapies: the clinical trial landscape. Nat. Rev. Drug Discov. 19, 583–584 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Fucà, G., Reppel, L., Landoni, E., Savoldo, B. & Dotti, G. Enhancing chimeric antigen receptor T-cell efficacy in solid tumors. Clin. Cancer Res. 26, 2444–2451 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Anderson, K. G., Stromnes, I. M. & Greenberg, P. D. Obstacles posed by the tumor microenvironment to T cell activity: a case for synergistic therapies. Cancer Cell 31, 311–325 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Mirzaei, H. R., Rodriguez, A., Shepphird, J., Brown, C. E., and Badie, B. Chimeric antigen receptors T cell therapy in solid tumor: challenges and clinical applications. Front. Immunol. 8, 1850 (2017).

  • Dang, L. H., Bettegowda, C., Huso, D. L., Kinzler, K. W. & Vogelstein, B. Combination bacteriolytic therapy for the treatment of experimental tumors. Proc. Natl Acad. Sci. USA 98, 15155–15160 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Leschner, S., et al. Tumor invasion of Salmonella enterica Serovar Typhimurium is accompanied by strong hemorrhage promoted by TNF-α. PLoS One 4, e6692 (2009).

  • Kang, S.-R. et al. Imaging of tumor colonization by Escherichia coli using 18F-FDS PET. Theranostics 10, 4958–4966 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Gurbatri, C. R., et al. Engineered probiotics for local tumor delivery of checkpoint blockade nanobodies. Science Translational Medicine 12, eaax0876 (2020).

  • Jiang, S.-N. et al. Inhibition of tumor growth and metastasis by a combination of Escherichia coli–mediated Cytolytic therapy and radiotherapy. Mol. Ther. 18, 635–642 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ryan, R. M. et al. Bacterial delivery of a novel cytolysin to hypoxic areas of solid tumors. Gene Ther. 16, 329–339 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Groot, A. J. et al. Functional antibodies produced by oncolytic clostridia. Biochemical Biophysical Res. Commun. 364, 985–989 (2007).

    CAS 

    Google Scholar 

  • Duong, M. T.-Q., Qin, Y., You, S.-H. & Min, J.-J. Bacteria-cancer interactions: bacteria-based cancer therapy. Exp. Mol. Med. 51, 1–15 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Coley, W. B. II. Contribution to the Knowledge of Sarcoma. Ann. Surg. 14, 199–220 (1891).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Felgner, S., Pawar, V., Kocijancic, D., Erhardt, M. & Weiss, S. Tumour-targeting bacteria-based cancer therapies for increased specificity and improved outcome. Microb. Biotechnol. 10, 1074–1078 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Chien, T. et al. Multiplexed biosensors for precision bacteria tropism in vivo. bioRxiv 851311, (2019)

  • Clairmont, C. et al. Biodistribution and genetic stability of the novel antitumor agent VNP20009, a genetically modified strain of salmonella typhimuvium. J. Infect. Dis. 181, 1996–2002 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Park, S.-H. et al. RGD peptide cell-surface display enhances the targeting and therapeutic efficacy of attenuated Salmonella-mediated cancer therapy. Theranostics 6, 1672–1682 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Stritzker, J. et al. Tumor-specific colonization, tissue distribution, and gene induction by probiotic Escherichia coli Nissle 1917 in live mice. Int. J. Med. Microbiol. 297, 151–162 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Massa, P. E., Paniccia, A., Monegal, A., de Marco, A. & Rescigno, M. Salmonella engineered to express CD20-targeting antibodies and a drug-converting enzyme can eradicate human lymphomas. Blood 122, 705–714 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Zheng, J. H., et al. Two-step enhanced cancer immunotherapy with engineered Salmonella typhimurium secreting heterologous flagellin. Science Translational Medicine 9, eaak9537 (2017).

  • Dai, Y., Toley, B. J., Swofford, C. A. & Forbes, N. S. Construction of an inducible cell-communication system that amplifies Salmonella gene expression in tumor tissue. Biotechnol. Bioeng. 110, 1769–1781 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Nguyen, V. H. et al. Genetically engineered salmonella typhimurium as an imageable therapeutic probe for cancer. Cancer Res 70, 18–23 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Loessner, H. et al. Remote control of tumour-targeted Salmonella enterica serovar Typhimurium by the use of l-arabinose as inducer of bacterial gene expression in vivo. Cell. Microbiol. 9, 1529–1537 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Royo, J. L. et al. In vivo gene regulation in Salmonella spp. by a salicylate-dependent control circuit. Nat. Methods 4, 937–942 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Hartsough, L. A., et al. Optogenetic control of gut bacterial metabolism to promote longevity. eLife 9, e56849 (2020).

  • Lalwani, M. A. et al. Optogenetic control of the lac operon for bacterial chemical and protein production. Nat. Chem. Biol. 17, 71–79 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, Z., et al. Programming bacteria with light—sensors and applications in synthetic biology. Front Microbiol 9, 2692 (2018).

  • Ash, C., Dubec, M., Donne, K. & Bashford, T. Effect of wavelength and beam width on penetration in light-tissue interaction using computational methods. Lasers Med Sci. 32, 1909–1918 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Nuyts, S. et al. The use of radiation-induced bacterial promoters in anaerobic conditions: a means to control gene expression in clostridium-mediated therapy for cancer. rare 155, 716–723 (2001).

    CAS 

    Google Scholar 

  • McDannold, N. J., King, R. L., Jolesz, F. A. & Hynynen, K. H. Usefulness of MR imaging-derived thermometry and dosimetry in determining the threshold for tissue damage induced by thermal surgery in rabbits. Radiology 216, 517–523 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • McDannold, N., Vykhodtseva, N., Jolesz, F. A. & Hynynen, K. MRI investigation of the threshold for thermally induced blood–brain barrier disruption and brain tissue damage in the rabbit brain. Magn. Reson. Med. 51, 913–923 (2004).

    PubMed 

    Google Scholar 

  • Rome, C., Couillaud, F. & Moonen, C. T. W. Spatial and temporal control of expression of therapeutic genes using heat shock protein promoters. Methods 35, 188–198 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Moonen, C. T. W. Spatio-temporal control of gene expression and cancer treatment using magnetic resonance imaging–guided focused ultrasound. Clin. Cancer Res. 13, 3482–3489 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • Kruse, D. E., Mackanos, M. A., Connell-Rodwell, C. E., Contag, C. H. & Ferrara, K. W. Short-duration-focused ultrasound stimulation of Hsp70 expressionin vivo. Phys. Med. Biol. 53, 3641–3660 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Piraner, D. I., Abedi, M. H., Moser, B. A., Lee-Gosselin, A. & Shapiro, M. G. Tunable thermal bioswitches for in vivo control of microbial therapeutics. Nat. Chem. Biol. 13, 75–80 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Leventhal, D. S. et al. Immunotherapy with engineered bacteria by targeting the STING pathway for anti-tumor immunity. Nat. Commun. 11, 2739 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hsiao, V., Hori, Y., Rothemund, P. W. & Murray, R. M. A population-based temporal logic gate for timing and recording chemical events. Mol. Syst. Biol. 12, 869 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Meysman, P., Sánchez-Rodríguez, A., Fu, Q., Marchal, K. & Engelen, K. Expression divergence between escherichia coli and salmonella enterica serovar typhimurium reflects their lifestyles. Mol. Biol. Evolution 30, 1302–1314 (2013).

    CAS 

    Google Scholar 

  • Hurme, R., Berndt, K. D., Normark, S. J. & Rhen, M. A proteinaceous gene regulatory thermometer in Salmonella. Cell 90, 55–64 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • Valdez-Cruz, N. A., Caspeta, L., Pérez, N. O., Ramírez, O. T. & Trujillo-Roldán, M. A. Production of recombinant proteins in E. coli by the heat inducible expression system based on the phage lambda pL and/or pR promoters. Micro. Cell Fact. 9, 18 (2010).

    Google Scholar 

  • Lewis, D., Le, P., Zurla, C., Finzi, L. & Adhya, S. Multilevel autoregulation of λ repressor protein CI by DNA looping in vitro. PNAS 108, 14807–14812 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Abedi, M. H., Lee, J., Piraner, D. I. & Shapiro, M. G. Thermal control of engineered T-cells. ACS Synth. Biol. 9, 1941–1950 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Echols, H. Lysogeny: viral repression and site-specific recombination. Annu. Rev. Biochem. 40, 827–854 (1971).

    CAS 
    PubMed 

    Google Scholar 

  • Xu, Z. et al. Accuracy and efficiency define Bxb1 integrase as the best of fifteen candidate serine recombinases for the integration of DNA into the human genome. BMC Biotechnol. 13, 87 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mutalik, V. K. et al. Precise and reliable gene expression via standard transcription and translation initiation elements. Nat. Methods 10, 354–360 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, Y.-J. et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat. Methods 10, 659–664 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Flynn, J. M. et al. Overlapping recognition determinants within the ssrA degradation tag allow modulation of proteolysis. PNAS 98, 10584–10589 (2001).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Courbet, A., Endy, D., Renard, E., Molina, F. & Bonnet, J. Detection of pathological biomarkers in human clinical samples via amplifying genetic switches and logic gates. Sci. Transl. Med. 7, 289ra83–289ra83 (2015).

    PubMed 

    Google Scholar 

  • Righetti, F., and Narberhaus, F. How to find RNA thermometers. Front. Cell. Infect. Microbiol. 4, 132 (2014).

  • Roßmanith, J., Weskamp, M. & Narberhaus, F. Design of a temperature-responsive transcription terminator. ACS Synth. Biol. 7, 613–621 (2018).

    PubMed 

    Google Scholar 

  • Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Bertrand, A., Kostine, M., Barnetche, T., Truchetet, M.-E. & Schaeverbeke, T. Immune related adverse events associated with anti-CTLA-4 antibodies: systematic review and meta-analysis. BMC Med. 13, 211 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mukherjee, K. J., Rowe, D. C. D., Watkins, N. A. & Summers, D. K. Studies of single-chain antibody expression in quiescent Escherichia coli. Appl. Environ. Microbiol. 70, 3005–3012 (2004).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lei, S. P., Lin, H. C., Wang, S. S., Callaway, J. & Wilcox, G. Characterization of the Erwinia carotovora pelB gene and its product pectate lyase. J. Bacteriol. 169, 4379–4383 (1987).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Grady, R. & Hayes, F. Axe-Txe, a broad-spectrum proteic toxin-antitoxin system specified by a multidrug-resistant, clinical isolate of Enterococcus faecium. Mol. Microbiol 47, 1419–1432 (2003).

    CAS 
    PubMed 

    Google Scholar 

  • Fedorec, A. J. H. et al. Two new plasmid post-segregational killing mechanisms for the implementation of synthetic gene networks in Escherichia coli. iScience 14, 323–334 (2019).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sleight, S. C. & Sauro, H. M. Visualization of evolutionary stability dynamics and competitive fitness of escherichia coli engineered with randomized multigene circuits. ACS Synth. Biol. 2, 519–528 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Haar, G. T. & Coussios, C. High intensity focused ultrasound: physical principles and devices. Int. J. Hyperth.: Off. J. Eur. Soc. Hyperthermic Oncol., North Am. Hyperth. Group 23, 89–104 (2007).

    Google Scholar 

  • Escoffre, J.-M., and Bouakaz, A. (Eds.). (2016) Therapeutic Ultrasound. Springer International Publishing, Cham.

  • Chavez, M. et al. Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation. Theranostics 8, 3611–3628 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Silvestrini, M. T. et al. Priming is key to effective incorporation of image-guided thermal ablation into immunotherapy protocols. JCI Insight 2. e90521 (2017).

  • Bar-Zion, A. et al. Acoustically triggered mechanotherapy using genetically encoded gas vesicles. Nat. Nanotechnol. 16, 1403–1412 (2021).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Salomir, R., Vimeux, F. C., Zwart, J. A., de, Grenier, N. & Moonen, C. T. W. Hyperthermia by MR-guided focused ultrasound: Accurate temperature control based on fast MRI and a physical model of local energy deposition and heat conduction. Magn. Reson. Med. 43, 342–347 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Landry, B. P. & Tabor, J. J. Engineering diagnostic and therapeutic gut bacteria, in Bugs as Drugs, pp 331–361. (John Wiley & Sons, Ltd., 2018).

  • Chien, T., Doshi, A. & Danino, T. Advances in bacterial cancer therapies using synthetic biology. Curr. Opin. Syst. Biol. 5, 1–8 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Dou, J. & Bennett, M. R. Synthetic biology and the gut. Microbiome. Biotechnol. J. 13, 1700159 (2018).

    Google Scholar 

  • Riglar, D. T. & Silver, P. A. Engineering bacteria for diagnostic and therapeutic applications. Nat. Rev. Microbiol 16, 214–225 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Couture, O., Foley, J., Kassell, N. F., Larrat, B., and Aubry, J.-F. Review of ultrasound mediated drug delivery for cancer treatment: updates from pre-clinical studies. Translational Cancer Research 3 (2014).

  • Deckers, R. & Moonen, C. T. W. Ultrasound triggered, image guided, local drug delivery. J. Controlled Release 148, 25–33 (2010).

    CAS 

    Google Scholar 

  • Chowdhury, S. et al. Programmable bacteria induce durable tumor regression and systemic antitumor immunity. Nat. Med. 25, 1057–1063 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kocijancic, D. et al. Local application of bacteria improves safety of Salmonella-mediated tumor therapy and retains advantages of systemic infection. Oncotarget 8, 49988–50001 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Mimee, M., Citorik, R. J. & Lu, T. K. Microbiome therapeutics — Advances and challenges. Adv. Drug Deliv. Rev. 105, 44–54 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Voigt, C. A. Synthetic biology 2020–2030: six commercially-available products that are changing our world. Nat. Commun. 11, 6379 (2020).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • González, L. M., Mukhitov, N. & Voigt, C. A. Resilient living materials built by printing bacterial spores. Nat. Chem. Biol. 16, 126–133 (2020).

    PubMed 

    Google Scholar 

  • Nguyen, P. Q., Courchesne, N.-M. D., Duraj‐Thatte, A., Praveschotinunt, P. & Joshi, N. S. Engineered living materials: prospects and challenges for using biological systems to direct the assembly of smart materials. Adv. Mater. 30, 1704847 (2018).

    Google Scholar 

  • Gilbert, C. et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat Mater 20, 691–700 (2021).

  • Lee, S. J., Lee, S.-J., and Lee, D.-W. Design and development of synthetic microbial platform cells for bioenergy. Front. Microbiol. 4 (2013).

  • Source link