Preloader

Generation and characterization of hair-bearing skin organoids from human pluripotent stem cells

  • Dąbrowska, A. K. et al. The relationship between skin function, barrier properties, and body‐dependent factors. Ski. Res. Technol. 24, 165–174 (2018).

    Google Scholar 

  • Kolarsick, P. A. J., Kolarsick, M. A. & Goodwin, C. Anatomy and physiology of the skin. J. Dermatol. Nurs. Assoc. 3, 203–213 (2011).

    Google Scholar 

  • Nose, H., Kamijo, Y. & Masuki, S. Chapter 25—interactions between body fluid homeostasis and thermoregulation in humans. Handb. Clin. Neurol. 156, 417–429 (2018).

    PubMed 

    Google Scholar 

  • Woo, S.-H., Lumpkin, E. A. & Patapoutian, A. Merkel cells and neurons keep in touch. Trends Cell Biol. 25, 74–81 (2015).

    PubMed 

    Google Scholar 

  • Zimmerman, A., Bai, L. & Ginty, D. D. The gentle touch receptors of mammalian skin. Science 346, 950–954 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, B. K., Siprashvili, Z. & Khavari, P. A. Advances in skin grafting and treatment of cutaneous wounds. Science 346, 941–945 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Karimkhani, C. et al. Global skin disease morbidity and mortality: an update from the Global Burden of Disease Study 2013. JAMA Dermatol. 153, 406–412 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • He, Z. et al. Factors affecting health-related quality of life in patients with skin disease: cross-sectional results from 8,789 patients with 16 skin diseases. Health Qual. Life Outcomes 18, 298 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Laughter, M. R. et al. The burden of skin and subcutaneous diseases in the United States from 1990 to 2017. JAMA Dermatol. 156, 874–881 (2020).

    PubMed 

    Google Scholar 

  • Laughter, M. R. et al. The global burden of atopic dermatitis: lessons from the Global Burden of Disease Study 1990–2017*. Brit. J. Dermatol. 184, 304–309 (2021).

    CAS 

    Google Scholar 

  • Mehrmal, S., Uppal, P., Nedley, N., Giesey, R. L. & Delost, G. R. The global, regional, and national burden of psoriasis in 195 countries and territories, 1990 to 2017: a systematic analysis from the Global Burden of Disease Study 2017. J. Am. Acad. Dermatol. 84, 46–52 (2021).

    PubMed 

    Google Scholar 

  • Wu, X., Scott, L., Washenik, K. & Stenn, K. Full-thickness skin with mature hair follicles generated from tissue culture expanded human cells. Tissue Eng. 20, 3314–3321 (2014).

    Google Scholar 

  • Klicznik, M. M. et al. A novel humanized mouse model to study the function of human cutaneous memory T cells in vivo in human skin. Sci. Rep. 10, 11164 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Agarwal, Y. et al. Development of humanized mouse and rat models with full-thickness human skin and autologous immune cells. Sci. Rep. 10, 14598 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salgado, G., Ng, Y. Z., Koh, L. F., Goh, C. S. M. & Common, J. E. Human reconstructed skin xenografts on mice to model skin physiology. Differentiation 98, 14–24 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Takagi, R. et al. Bioengineering a 3D integumentary organ system from iPS cells using an in vivo transplantation model. Sci. Adv. 2, e1500887 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zheng, Y. et al. Organogenesis from dissociated cells: generation of mature cycling hair follicles from skin-derived cells. J. Invest. Dermatol. 124, 867–876 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Zomer, H. D. & Trentin, A. G. Skin wound healing in humans and mice: challenges in translational research. J. Dermatol. Sci. 90, 3–12 (2018).

    PubMed 

    Google Scholar 

  • Itoh, M. et al. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs). PLoS ONE 8, e77673 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, R. et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells. Nat. Commun. 5, 3071–3071 (2014).

    PubMed 

    Google Scholar 

  • Gledhill, K. et al. Melanin transfer in human 3D skin equivalents generated exclusively from induced pluripotent stem cells. PLoS ONE 10, e0136713 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Abaci, H. E. et al. Tissue engineering of human hair follicles using a biomimetic developmental approach. Nat. Commun. 9, 5301 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Letsiou, S. Tracing skin aging process: a mini-review of in vitro approaches. Biogerontology 22, 261–272 (2021).

    PubMed 

    Google Scholar 

  • Christian, H., Hans & Yves, P. in Skin Disease Models In Vitro and Inflammatory Mechanisms: Predictability for Drug Development 187– 218 (Springer International Publishing, 2021); https://doi.org/10.1007/164_2020_428

  • Lee, J. et al. Hair-bearing human skin generated entirely from pluripotent stem cells. Nature 582, 399–404 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lee, J. & Koehler, K. R. Skin organoids: a new human model for developmental and translational research. Exp. Dermatol. 30, 613–620 (2021).

    PubMed 

    Google Scholar 

  • Biggs, L. C., Kim, C. S., Miroshnikova, Y. A. & Wickström, S. A. Mechanical forces in the skin: roles in tissue architecture, stability, and function. J. Invest. Dermatol. 140, 284–290 (2019).

    PubMed 

    Google Scholar 

  • Wong, R., Geyer, S., Weninger, W., Guimberteau, J. & Wong, J. K. The dynamic anatomy and patterning of skin. Exp. Dermatol. 25, 92–98 (2016).

    PubMed 

    Google Scholar 

  • Lee, J. et al. Hair follicle development in mouse pluripotent stem cell-derived skin organoids. Cell Rep. 22, 242–254 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Koehler, K. R., Mikosz, A. M., Molosh, A. I., Patel, D. & Hashino, E. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture. Nature 500, 217–221 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eiraku, M. et al. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3, 519–532 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Eiraku, M. et al. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472, 51–56 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Koehler, K. R. et al. Generation of inner ear organoids containing functional hair cells from human pluripotent stem cells. Nat. Biotechnol. 35, 583–589 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Prummel, K. D., Nieuwenhuize, S. & Mosimann, C. The lateral plate mesoderm. Development 147, dev175059 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Guibentif, C. et al. Diverse routes toward early somites in the mouse embryo. Dev. Cell 56, 141–153.e6 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wilson, P. A. & Hemmati-Brivanlou, A. Induction of epidermis and inhibition of neural fate by Bmp-4. Nature 376, 331–333 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • Duverger, O. & Morasso, M. I. To grow or not to grow: hair morphogenesis and human genetic hair disorders. Semin. Cell Dev. Biol. 25, 22–33 (2014).

    PubMed 

    Google Scholar 

  • McCune, J. M. & Weissman, I. L. The ban on US government funding research using human fetal tissues: how does this fit with the NIH mission to advance medical science for the benefit of the citizenry? Stem Cell Rep. 13, 777–786 (2019).

    Google Scholar 

  • Haniffa, M. et al. A roadmap for the Human Developmental Cell Atlas. Nature 597, 196–205 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Yu, Q. et al. Charting human development using a multi-endodermal organ atlas and organoid models. Cell 184, 3281–3298 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Haniffa, M. et al. Human Developmental Cell Atlas: milestones achieved and the roadmap ahead. https://doi.org/10.21203/rs.3.rs-73986/v1 (2020).

  • Regev, A. et al. The Human Cell Atlas. eLife 6, e27041 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Yucha, S. E. V., Tamamoto, K. A., Nguyen, H., Cairns, D. M. & Kaplan, D. L. Human skin equivalents demonstrate need for neuro-immuno-cutaneous system. Adv. Biosyst. 3, 1800283 (2019).

    Google Scholar 

  • Meltzer, S., Santiago, C., Sharma, N. & Ginty, D. D. The cellular and molecular basis of somatosensory neuron development. Neuron 109, 3736–3757 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Andersen, J. et al. Generation of functional human 3D cortico-motor assembloids. Cell 183, 1913–1929.e26 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wainger, B. J. et al. Modeling pain in vitro using nociceptor neurons reprogrammed from fibroblasts. Nat. Neurosci. 18, 17–24 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Oulès, B. et al. Contribution of GATA6 to homeostasis of the human upper pilosebaceous unit and acne pathogenesis. Nat. Commun. 11, 5067 (2020).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Kanwar, I. L. et al. Models for acne: a comprehensive study. Drug Discov. Ther. 12, 329–340 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Langan, S. M., Irvine, A. D. & Weidinger, S. Atopic dermatitis. Lancet 396, 345–360 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Condorelli, A. G., Dellambra, E., Logli, E., Zambruno, G. & Castiglia, D. Epidermolysis bullosa-associated squamous cell carcinoma: from pathogenesis to therapeutic perspectives. Int J. Mol. Sci. 20, 5707 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Kim, D. P., Kus, K. J. B. & Ruiz, E. Basal cell carcinoma review. Hematol. Oncol. Clin. North Am. 33, 13–24 (2019).

    PubMed 

    Google Scholar 

  • Davis, L. E., Shalin, S. C. & Tackett, A. J. Current state of melanoma diagnosis and treatment. Cancer Biol. Ther. 20, 1–14 (2019).

    Google Scholar 

  • Que, S. K. T., Zwald, F. O. & Schmults, C. D. Cutaneous squamous cell carcinoma Incidence, risk factors, diagnosis, and staging. J. Am. Acad. Dermatol. 78, 237–247 (2018).

    PubMed 

    Google Scholar 

  • Waldman, A. & Schmults, C. Cutaneous squamous cell carcinoma. Hematol. Oncol. Clin. North Am. 33, 1–12 (2019).

    PubMed 

    Google Scholar 

  • Hogue, L. & Harvey, V. M. Basal cell carcinoma, squamous cell carcinoma, and cutaneous melanoma in skin of color patients. Dermatol. Clin. 37, 519–526 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Yum, M. K. et al. Tracing oncogene-driven remodelling of the intestinal stem cell niche. Nature 594, 442–447 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Yang, L., Mali, P., Kim-Kiselak, C. & Church, G. In Gene Correction. Methods in Molecular Biology (Methods and Protocols) (ed. Storici F.) Vol 1114, 245–267 (Humana Press, 2014); https://doi.org/10.1007/978-1-62703-761-7_16

  • Hendriks, D., Clevers, H. & Artegiani, B. CRISPR-Cas tools and their application in genetic engineering of human stem cells and organoids. Cell Stem Cell 27, 705–731 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Wenzel, D. et al. Genetically corrected iPSCs as cell therapy for recessive dystrophic epidermolysis bullosa. Sci. Transl. Med. 6, 264ra165–264ra165 (2014).

    PubMed 

    Google Scholar 

  • Sebastiano, V. et al. Human COL7A1-corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci. Transl. Med. 6, 264ra163–264ra163 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Tolar, J. et al. Induced pluripotent stem cells from individuals with recessive dystrophic epidermolysis bullosa. J. Invest. Dermatol. 131, 848–856 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Itoh, M., Kiuru, M., Cairo, M. S. & Christiano, A. M. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc. Natl Acad. Sci. USA. 108, 8797–8802 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Candi, E., Schmidt, R. & Melino, G. The cornified envelope: a model of cell death in the skin. Nat. Rev. Mol. Cell Biol. 6, 328–340 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Langbein, L., Yoshida, H., Praetzel-Wunder, S., Parry, D. A. & Schweizer, J. The keratins of the human beard hair medulla: the riddle in the middle. J. Invest. Dermatol. 130, 55–73 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Lu, C. & Fuchs, E. Sweat gland progenitors in development, homeostasis, and wound repair. Cold Spring Harb. Perspect. Med. 4, a015222 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Lu, C. P., Polak, L., Keyes, B. E. & Fuchs, E. Spatiotemporal antagonism in mesenchymal–epithelial signaling in sweat versus hair fate decision. Science 354, aah6102 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhao, X. et al. Review on the vascularization of organoids and organoids-on-a-chip. Front. Bioeng. Biotechnol. 9, 637048 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Augustin, H. G., Koh, G. Y., Thurston, G. & Alitalo, K. Control of vascular morphogenesis and homeostasis through the angiopoietin–Tie system. Nat. Rev. Mol. Cell Biol. 10, 165–177 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Holloway, E. M. et al. Differentiation of human intestinal organoids with endogenous vascular endothelial cells. Dev. Cell 54, 516–528.e7 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bar-Ephraim, Y. E., Kretzschmar, K. & Clevers, H. Organoids in immunological research. Nat. Rev. Immunol. 20, 279–293 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Tchieu, J. et al. A modular platform for differentiation of human PSCs into all major ectodermal lineages. Cell Stem Cell 21, 399–410.e7 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Volpato, V. & Webber, C. Addressing variability in iPSC-derived models of human disease: guidelines to promote reproducibility. Dis. Model Mech. 13, dmm042317 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Vigilante, A. et al. Identifying extrinsic versus intrinsic drivers of variation in cell behavior in human iPSC lines from healthy donors. Cell Rep. 26, 2078–2087.e3 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, W., Germain, R. N. & Gerner, M. Y. High-dimensional cell-level analysis of tissues with Ce3D multiplex volume imaging. Nat. Protoc. 14, 1708–1733 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link