Preloader

Synthesis of new series of quinoline derivatives with insecticidal effects on larval vectors of malaria and dengue diseases

  • Suresh, U. et al. Tackling the growing threat of dengue. Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 1551–1562. https://doi.org/10.1007/s00436-015-4339-9 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Somsak, V., Polwiang, N. & Chachiyo, S. In vivo anti-malarial activity of Annonamuricata leaf extract in mice infected with Plasmodium berghei. J. Pathogens. 2016, 3264070. https://doi.org/10.1155/2016/3264070 (2016).

    CAS 
    Article 

    Google Scholar 

  • Karunamoorthi, K. & Sabesan, S. Insecticide resistance in insect vectors of disease with special reference to mosquitoes: A potential threat to global public health. Health Scope. 2(1), 4–18. https://doi.org/10.5812/jhs.9840 (2013).

    Article 

    Google Scholar 

  • Mir, A. H. et al. Accumulation and trafficking of zinc oxide nanoparticles in an invertebrate model, Bombyx mori, with insights on their effects on immuno-competent cells. Sci. Rep. 10, 1617. https://doi.org/10.1038/s41598-020-58526-1 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • World Health Organization. Number of Reported Cases of Dengue and Severe Dengue (SD) in the Americas by Country (retrieved on 23rd June 2019). http://www.who.int/mediacentre/factsheets/fs117/en/. Accessed 19 March 2017.

  • Tavares, M. et al. Trends in insect repellent formulations: A review. Int. J. Pharm. 539(1–2), 190–209. https://doi.org/10.1016/j.ijpharm.2018.01.046 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Priyanka, G. et al. Synthesis, characterization, and antimicrobial screening of substituted quiazolinone derivatives. Arab. J. Chem. 8, 474–479. https://doi.org/10.1016/j.arabjc.2011.01.025 (2015).

    CAS 
    Article 

    Google Scholar 

  • Shafi, S., Kavitha, N., Karthi, A. & Arun, A. Synthesis, characterisation, and antimicrobial activity of some novel s-triazine derivatives incorporating a quinoline moiety. Acta. Chim. Pharm. Indica. 6(2), 53–56. https://doi.org/10.1016/j.jscs.2015.01.004 (2016).

    CAS 
    Article 

    Google Scholar 

  • Shang, X. F. et al. Biologically active quinoline and quinazoline alkaloids part I. Med. Res. Rev. 38(3), 775–828. https://doi.org/10.1002/med.21466 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jeon, J. H., Kim, M. G. & Lee, H. S. Insecticidal activities of Rutachalepensis leaves isolated constituent and structure-relationships of its analogues against Sitophilus oryzae. J. Korean Soc. Appl. Biol. Chem. 56(5), 591–596. https://doi.org/10.1007/s13765-013-3215-5 (2013).

    CAS 
    Article 

    Google Scholar 

  • Sondos, M., Bedoui, A. & Bensalah, N. Efficient degradation of chloroquine drug by electro-fenton oxidation: Effects of operating conditions and degradation mechanisms. Chemosphere 260, 127558. https://doi.org/10.1016/j.chemosphere.2020.127558 (2020).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Zhang, Y. et al. Novel 4-arylaminoquinazolines bearing N,N-diethyl (aminoethyl) amino moiety with antitumour activity as EGFRwt-TK inhibitor. J. Enzyme Inhib. Med. Chem. 34(1), 1668–1677. https://doi.org/10.1080/14756366.2019.1667341 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Patel, D. B., Rajani, D. P., Rajani, S. D. & Patel, H. D. A green synthesis of quinoline-4-carboxylic derivatives using p-toluenesulfonic acid as an efficient organocatalyst under microwave irradiation and their docking, molecular dynamics, ADME-Tox and biological evaluation. J. Heterocycl. Chem. 57(4), 1524–1544. https://doi.org/10.1002/jhet.3848 (2020).

    CAS 
    Article 

    Google Scholar 

  • Alagarsamy, V., Solomon, V. R. & Dhanabal, K. Synthesis and pharmacological evaluation of some 3-phenyl-2-substituted-3H-quinazolin-4-one as analgesic, anti-inflammatory agents. Bio-org. Med. Chem. 15, 235–241. https://doi.org/10.1002/ardp.200600189 (2007).

    CAS 
    Article 

    Google Scholar 

  • Antipenko, L. et al. Synthesis of new 2-thio-[1,2,4]-triazolo[1,5-c] quinazoline derivatives and its antimicrobial activity. Chem. Pharm. Bull. 57, 580–585. https://doi.org/10.1248/cpb.57.580 (2009).

    CAS 
    Article 

    Google Scholar 

  • Rohini, R., Muralidhar Reddy, P., Shanker, K., Hu, A. & Ravinder, V. Antimicrobial study of newly synthesized 6-substituted indolo[1,2-c] quinazolines. Eur. J. Med. Chem. 45, 1200–1205. https://doi.org/10.1016/j.ejmech.2009.11.038 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chen, C. et al. Design, synthesis and biological evaluation of quinoline derivatives as HDAC class I inhibitors. Eur. J. Med. Chem. 133, 11–23. https://doi.org/10.1016/j.ejmech.2017.03.064 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Saravanan, G., Alagarsamy, V. & Prakash, C. R. Synthesis and evaluation of antioxidant activities of novel quinazoline derivatives. Int. J. Pharm. Sci. 2, 83–86. https://doi.org/10.1056/NEJMp2009457 (2010).

    CAS 
    Article 

    Google Scholar 

  • Jadhav, A. G. & Halikar, N. K. Synthesis and biological activity of pyrimido [1, 2- a] quinoline moiety and its 2-substituted derivatives. J. Phys. Conf. Ser. 423, 012007. https://doi.org/10.1088/1742-6596/423/1/012007 (2013).

    CAS 
    Article 

    Google Scholar 

  • Li, Y. et al. Synthesis and biological activity of imidazo [4,5-c] quinoline derivatives as PI3K/mTOR inhibitors. Chem. Res. Chin. Univ. 33, 895–902 (2017).

    CAS 
    Article 

    Google Scholar 

  • Martinez, P. D. G. et al. 2,3,8-Trisubstituted quinolines with antimalarial activity. An Acad. Bras. Cienc. https://doi.org/10.1590/0001-3765201820170820 (2018).

    Article 
    PubMed 

    Google Scholar 

  • Pogrmic-Majkic, K. et al. BPA activates EGFR and ERK1/2 through PPARγ to increase expression of steroidogenic acute regulatory protein in human cumulus granulosa cells. Chemosphere 229, 60–67. https://doi.org/10.1016/j.chemosphere.2019.04.174 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yu, E. et al. High-yielding continuous-flow synthesis of antimalarial drug hydroxychloroquine. Beilstein J. Org. Chem. 14, 583–592. https://doi.org/10.3762/bjoc.14.45 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rome, B. N. & Avorn, J. Drug evaluation during the Covid-19 pandemic. N. Engl. J. Med. https://doi.org/10.1056/NEJMp2009457 (2020).

    Article 
    PubMed 

    Google Scholar 

  • Shaikh, A. R., Farooqui, M., Satpute, R. H. & Abed, S. Overview on nitrogen containing compounds and their assessment based on ‘International Regulatory Standards’. J. Drug Deliv. Ther. 8(6), 424–428. https://doi.org/10.22270/jddt.v8i6-s.2156 (2018).

    CAS 
    Article 

    Google Scholar 

  • Kerru, N., Gummidi, L., Maddila, S., Gangu, K. K. & Jonnalagadda, S. B. A review on recent advances in nitrogen-containing molecules and their biological applications. Molecules 25(8), 1–42. https://doi.org/10.3390/molecules25081909 (2020).

    CAS 
    Article 

    Google Scholar 

  • Nyberg, H. J. & Muto, K. Acoustic tracheal rupture provides insights into larval mosquito respiration. Sci. Rep. 10, 2378. https://doi.org/10.1038/s41598-020-59321-8 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yung, M. M. et al. Physicochemical characteristics and toxicity of surface-modified zinc oxide nanoparticles to freshwater and marine microalgae. Sci. Rep. 7(1), 15909. https://doi.org/10.1038/s41598-017-15988-0 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Efferth, T. Beyond malaria: The inhibition of viruses by artemisinin-type compounds. Biotechnol. Adv. 36(6), 1730–1737. https://doi.org/10.1016/j.biotechadv.2018.01.001 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mazumder, J. A. et al. Exposure of biosynthesized nanoscale ZnO to Brassica juncea crop plant: Morphological, biochemical, and molecular aspects. Sci. Rep. 10, 8531. https://doi.org/10.1038/s41598-020-65271-y (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Naseer, M., Aslam, U., Khalid, B. & Chen, B. Green route to synthesize Zinc Oxide Nanoparticles using leaf extracts of Cassia fistula and Melia azadarach and their antibacterial potential. Sci. Rep. 10, 9055. https://doi.org/10.1038/s41598-020-65949-3 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Selim, Y. A., Azb, M. A., Ragab, I. & Abd El-Azim, M. H. Green synthesis of zinc oxide nanoparticles using aqueous extract of Deverra tortuosa and their cytotoxic activities. Sci. Rep. 10, 3445. https://doi.org/10.1038/s41598-020-60541-1 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chauhan, A. et al. Photocatalytic dye degradation and antimicrobial activities of pure and Ag-doped ZnO using Cannabis sativa leaf extract. Sci. Rep. 10, 7881. https://doi.org/10.1038/s41598-020-64419-0 (2020).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Paulpandi, M. et al. Pyrimido quinolin derivative: A potential inhibitor for pandemic influenza A (H1N1) viral growth and its replication. J. Pharm. Res. 6(5), 532–537. https://doi.org/10.1038/s41598-020-60541-1 (2013).

    CAS 
    Article 

    Google Scholar 

  • Blake, L. D. Antimalarial Exoerythrocytic Stage Drug Discovery and Resistance Studies. ProQuest Dissertations and Theseses. 172. (2016).

  • Manohar, S., Tripathi, M. & Rawat, D. S. 4-Aminoquinoline based molecular hybrids as antimalarials: An overview. Curr. Top. Med. Chem. 14, 1706–1733. https://doi.org/10.2174/1568026614666140808125728 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Murugan, K. et al. Bismuth oxyiodide nanoflakes showed toxicity against the malaria vector Anopheles stephensi and in vivo antiplasmodial activity. J. Clust. Sci. 29(2), 337–344. https://doi.org/10.1007/s10876-018-1332-3 (2018).

    CAS 
    Article 

    Google Scholar 

  • Kovendan, K., Murugan, K., Vincent, S. & Barnard, D. R. Studies on larvicidal and pupicidal activity of Leucas aspera Willd (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against the malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol. Res. 110, 195–203. https://doi.org/10.1007/s00436-011-2469-2 (2012).

    Article 
    PubMed 

    Google Scholar 

  • Murugan, K. et al. Seaweed synthesized silver nanoparticles: An eco-friendly tool in the fight against Plasmodium falciparum and its vector Anopheles stephensi?. Parasitol. Res. 11, 4087–4097. https://doi.org/10.1007/s00436-015-4638-1 (2015).

    Article 

    Google Scholar 

  • Murugan, K. et al. Nanoparticles in the fight against mosquito-borne diseases: Bioactivity of Bruguiera cylindrica-synthesized nanoparticles against dengue virus DEN-2 (in vitro) and its mosquito vector Aedes aegypti (Diptera: Culicidae). Parasitol. Res. 114, 4349–4361. https://doi.org/10.1016/j.arabjc.2011.07.007 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Smilkstein, M., Sriwilaijaroen, N., Kelly, J. X., Wilairat, P. & Riscoe, M. Simple and inexpensive fluorescence-based technique for high-throughput antimalarial drug screening. Antimicrob. Agents Chemother. 48(5), 1803–1806. https://doi.org/10.1128/aac.48.5.1803-1806.2004 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bagavan, A., Rahuman, A. A., Kaushik, N. K. & Sahal, D. In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol. Res. 108(1), 15–22. https://doi.org/10.1155/2020/5041919 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Murugan, K. et al. In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res. Vet. Sci. 106, 14–22. https://doi.org/10.1016/j.rvsc.2016.03.001 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Ene, A. C., Ameh, D. A., Kwanashie, H. O., Agomo, P. U. & Atawodi, S. E. Preliminary in vivo antimalarial screening of petroleum ether, chloroform and methanol extracts of fifteen plants grown in Nigeria. J. Pharmacol. Toxicol. 3(4), 254–260. https://doi.org/10.3923/jpt.2008.254.260 (2008).

    Article 

    Google Scholar 

  • Argotte-Ramos, R. et al. Antimalarial 4-phenylcoumarins from the stem bark of Hintonia latiflora. J. Nat. Prod. 69(10), 1442–1444. https://doi.org/10.1021/np060233p (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sujitha, V. et al. Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol. Res. 114(9), 3313–3325. https://doi.org/10.1007/s00436-015-4556-2 (2015).

    Article 

    Google Scholar 

  • Finney, D. J. Probit Analysis 68–78 (Cambridge University Press, 1971).

    MATH 

    Google Scholar 

  • Singh, A., Kalamuddin, M. D., Mohmmed, A., Malhotra, P. & Hoda, N. Quinoline-triazole hybrids inhibit falcipain-2 and arrest the development of Plasmodium falciparum at the trophozoite stage. RSC Adv. 9, 39410. https://doi.org/10.1039/c9ra06571grsc.li/rsc-advances (2019).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Saini, D., Jain, S., Kumar, A. & Jain, N. Synthesis and anti-malarial potential of some novel quinoline-pyrazolopyridine derivatives. EXCLI J. 15, 730–737. https://doi.org/10.17179/excli2016-677 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Rueda, A. G., Carreno Otero, A. L., Duque, J. E. & Kouznetsov, V. V. Synthesis of new α-amino nitriles with insecticidal action on Aedes aegypti (Diptera: Culicidae). Revista Brasileira de Entomologia 62, 112–118. https://doi.org/10.1016/j.rbe.2018.01.004 (2018).

    Article 

    Google Scholar 

  • Shao, X. et al. Synthesis, crystal structure, and insecticidal activities of highly congested hexahydroimidazo [1,2-a] pyridine derivatives: Effect of conformation on activities. J. Agric. Food Chem. 58(5), 2690–2695. https://doi.org/10.1021/jf902513t (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Sun, H., Li, H., Wang, J. & Song, G. Synthesis and nematocidal activity of piperazinedione derivatives based on the natural product Barettin. Chin. Chem. Lett. 29(6), 977–980. https://doi.org/10.1016/j.cclet.2017.10.015 (2017).

    CAS 
    Article 

    Google Scholar 

  • Gayam, V. & Ravi, S. Cinnamoylated chloroquine analogues: A new structural class of antimalarial agents. Eur. J. Med. Chem. 135, 382–391. https://doi.org/10.1016/j.ejmech.2017.04.063 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kondaparia, S. et al. Antimalarial activity of novel 4-aminoquinolines active against drug resistant strains. Bioorg. Chem. 70, 74–85. https://doi.org/10.1016/s1383-5769(99)00023-9 (2017).

    Article 

    Google Scholar 

  • Cai, M. et al. Design and synthesis of novel insecticides based on the serotonergic ligand 1-[(4-aminophenyl) ethyl]-4-[3-(trifluoromethyl)phenyl] piperazine (PAPP). J. Agric. Food Chem. 58(5), 2624–2629. https://doi.org/10.1021/jf902640u (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Rahuman, A. A., Gopalakrishnan, G., Venkatesan, P., Geetha, K. & Bagavan, A. Mosquito larvicidal activity of isolated compounds from the rhizome of Zingiber officinale. Phytother. Res. 22(8), 1035–1039. https://doi.org/10.1002/ptr.2423 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kumawat, M. K., Singh, U. P., Singh, B., Prakash, A. & Chetia, D. Synthesis and antimalarial activity evaluation of 3-(3-(7-chloroquinolin-4-ylamino) propyl)-1,3-thiazinan-4-one derivatives. Arab. J. Chem. 9, S643–S647. https://doi.org/10.1016/j.arabjc.2011.07.007 (2016).

    CAS 
    Article 

    Google Scholar 

  • Faruk Khan, M. O. et al. Synthesis and antimalarial activities of cyclen 4-aminoquinoline analogs. Antimicrob. Agents Chemother. 53(4), 1320–1324. https://doi.org/10.1128/AAC.01304-08 (2009).

    CAS 
    Article 

    Google Scholar 

  • Pinheiro, L. C. S., Feitosa, L. M., Gandi, M. O., Silveira, F. F. & Boechat, N. The development of novel compounds against malaria: Quinolines, triazolpyridines, pyrazolopyridines and pyrazolopyrimidines. Molecules 24, 1–20. https://doi.org/10.3390/molecules24224095 (2019).

    CAS 
    Article 

    Google Scholar 

  • Foley, M. & Tiley, L. Quinoline antimalarials: Mechanisms of action and resistance and prospects for new agents. Pharmacol. Ther. 79(1), 55–87. https://doi.org/10.1016/s0163-7258(98)00012-6 (1998).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Herraiz, T., Guillen, H., Gonzalez-Pena, D. & Aran, V. J. Antimalarial quinoline drugs inhibits Hematin and increase free hemin catalyzing peroxidative reactions and inhibition of cysteine proteases. Sci. Rep. 9, 15398. https://doi.org/10.1038/s41598-019-51604-z (2019).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Aboelnaga, A. & El-Sayed, T. H. Click synthesis of new 7-chloroquinoline derivatives by using ultrasound irradiation and evaluation of their biological activity. Green Chem. Lett. Rev. 11(3), 254–263. https://doi.org/10.1080/17518253.2018.1473505 (2018).

    CAS 
    Article 

    Google Scholar 

  • Afzal, O. et al. A review on anticancer potential of bioactive heterocycle quinoline. Eur. J. Med. Chem. 97, 871–910. https://doi.org/10.1016/j.ejmech.2014.07.044 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Aderibigbe, B. A., Neuse, E. W., Sadiku, E. R., Ray, S. S. & Smith, P. J. Synthesis, characterization, and antiplasmodial activity of polymer-incorporated aminoquinolines. J. Biomed. Mater. Res. Part A. 102(6), 1941–1949. https://doi.org/10.1002/jbm.a.34866 (2013).

    CAS 
    Article 

    Google Scholar 

  • Erguc, A. et al. Synthesis and biological evaluation of new quinoline-based Thiazolyl hydrazone derivatives as potent antifungal and anticancer agents. Lett. Drug Des. Discovery 15(2), 193–202. https://doi.org/10.2174/1570180814666171003145227 (2018).

    CAS 
    Article 

    Google Scholar 

  • Theerthagiri, J. et al. Flower-like copper sulphide nanocrystals are highly effective against chloroquine-resistant Plasmodium falciparum and the malaria vector Anopheles stephensi. J. Cluster Sci. 28(1), 581–594. https://doi.org/10.1007/s10876-016-1128-2 (2017).

    CAS 
    Article 

    Google Scholar 

  • Tang, L. et al. Synthesis and in vivo antimalarial activity of novel naphthoquine derivatives with linear/cyclic structured pendants. Future Med. Chem. 9, 11. https://doi.org/10.4155/fmc-2017-0058 (2017).

    CAS 
    Article 

    Google Scholar 

  • Manohar, S., Rajesh, U. C., Khan, S. I., Tekwani, B. L. & Rawat, D. S. Novel 4-Aminoquinoline-pyrimidine based hybrids with improved in vitro and in vivo antimalarial activity. ACS Med. Chem. Lett. 3, 555–559. https://doi.org/10.1021/ml3000808 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sahu, R., Walker, L. A. & Tekwani, B. L. In vitro and in vivo anti-malarial activity of tigecycline, a glycylcycline antibiotic, in combination with chloroquine. Malar. J. 13(1), 414. https://doi.org/10.1186/1475-2875-13-414 (2014).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Murugan, K. et al. Fighting arboviral diseases: Low toxicity on mammalian cells, dengue growth inhibition (in vitro) and mosquitocidal activity of Centroceras clavulatum-synthesized silver nanoparticles. Parasitol. Res. 115, 651–662. https://doi.org/10.1007/s00436-015-4783-6 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Tseng, C. H. et al. Synthesis, antiproliferative and anti-dengue virus evaluations of 2-aroyl-3-arylquinoline derivatives. Eur. J. Med. Chem. 79, 66–76. https://doi.org/10.1016/j.ejmech.2014.03.074 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Beesetti, H. et al. A quinoline compound inhibits the replication of dengue virus serotypes 1–4 in vero cells. Antivir. Ther. 23(5), 385–394. https://doi.org/10.3851/IMP3231 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Santos, V. S., Vieira, J. E. L. & Pereira, B. B. Association of low concentrations of pyriproxyfen and spinosad as an environment-friendly strategy to rationalize Aedes aegypti control programs. Chemosphere 247, 125795. https://doi.org/10.1016/j.chemosphere.2019.125795 (2020).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Guardia, G. D. L. et al. Antiviral activity of novel quinoline derivatives against dengue virus serotype 2. Molecules 23, 672. https://doi.org/10.3390/molecules23030672 (2018).

    CAS 
    Article 
    PubMed Central 

    Google Scholar 

  • Devaux, C. A., Rolain, J. M., Colson, P. & Raoult, D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19?. Int. J. Antimicrob. Agents 55(5), 105938. https://doi.org/10.1016/j.ijantimicag.2020.105938 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kono, M. et al. Inhibition of human coronavirus 229E infection in human epithelial lung cells (L132) by chloroquine: involvement of p38 MAPK and ERK. Antiviral Res. 77, 150–152. https://doi.org/10.1016/j.antiviral.2007.10.011 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Colón-González, F. J., Peres, C. A., Steiner São Bernardo, C., Hunter, P. R. & Lake, I. R. After the epidemic: Zika virus projections for Latin America and the Caribbean. PLoS Negl. Trop. Dis. 11(11), 1–19. https://doi.org/10.1371/journal.pntd.0006007 (2017).

    Article 

    Google Scholar 

  • Amuthavalli, P. et al. Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Sci. Rep. 11, 8837. https://doi.org/10.1038/s41598-021-88164-0 (2021).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Source link