Preloader

Numerical study on the effect of capacitively coupled electrical stimulation on biological cells considering model uncertainties

  • Bassett, C. A. L. & Pawluk, R. J. Effects of electric currents on bone in vivo. Nature 204, 652–654 (1964).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • Brighton, C. T. et al. A multicenter study of the treatment of non-union with constant direct current. J. Bone Joint Surg. Am. 63, 2–13 (1981).

    CAS 
    PubMed 

    Google Scholar 

  • Shigino, T., Ochi, M., Kagami, H., Sakaguchi, K. & Nakade, O. Application of capacitively coupled electric field enhances periimplant osteogenesis in the dog mandible. Int. J. Prosthodont. 13 (2000).

  • Mittelmeier, W. et al. Biss: Concept and biomechanical investigations of a new screw system for electromagnetically induced internal osteostimulation. Arch. Orthop. Trauma Surg. 124, 86–91 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Wang, W., Wang, Z., Zhang, G., Clark, C. C. & Brighton, C. T. Up-regulation of chondrocyte matrix genes and products by electric fields. Clin. Orthop. Relat. Res. 427, S163–S173 (2004).

    Google Scholar 

  • Lee, C., Grad, S., Wimmer, M. & Alini, M. The influence of mechanical stimuli on articular cartilage tissue engineering. Top. Tissue Eng. 2, 1–32 (2006).

    CAS 

    Google Scholar 

  • Xu, J., Wang, W., Clark, C. C. & Brighton, C. T. Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels. Osteoarthr. Cartil. 17, 397–405 (2009).

    CAS 

    Google Scholar 

  • Balint, R., Cassidy, N. J. & Cartmell, S. H. Electrical stimulation: A novel tool for tissue engineering. Tissue Eng. Part B Rev. 19, 48–57 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Jahr, H., Matta, C. & Mobasheri, A. Physicochemical and biomechanical stimuli in cell-based articular cartilage repair. Curr. Rheumatol. Rep. 17, 1–12 (2015).

    CAS 

    Google Scholar 

  • Thrivikraman, G., Boda, S. K. & Basu, B. Unraveling the mechanistic effects of electric field stimulation towards directing stem cell fate and function: A tissue engineering perspective. Biomaterials 150, 60–86 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • Chen, C., Bai, X., Ding, Y. & Lee, I. S. Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering. Biomater. Res. 23, 1–12 (2019).

    CAS 

    Google Scholar 

  • Massari, L. et al. Biophysical stimulation of bone and cartilage: State of the art and future perspectives. Int. Orthop. 43, 539–551 (2019).

    PubMed 

    Google Scholar 

  • Dauben, T. J. et al. A novel in vitro system for comparative analyses of bone cells and bacteria under electrical stimulation. BioMed Res. Int. 2016, 1–12 (2016).

    Google Scholar 

  • Brighton, T., Wang, W. & Clark, C. C. The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants. J. Bone Joint Surg. 90, 833–848 (2008).

    PubMed 

    Google Scholar 

  • Krueger, S. et al. Re-differentiation capacity of human chondrocytes in vitro following electrical stimulation with capacitively coupled fields. J. Clin. Med. 8, 1771 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • Lorich, D. G. et al. Biochemical pathway mediating the response of bone cells to capacitive coupling. Clin. Orthop. Relat. Res. 350, 246–256 (1998).

    Google Scholar 

  • Timoshkin, I. V., MacGregor, S. J., Fouracre, R. A., Crichton, B. H. & Anderson, J. G. Transient electrical field across cellular membranes: Pulsed electric field treatment of microbial cells. J. Phys. D Appl. Phys. 39, 596–603 (2006).

    ADS 
    CAS 

    Google Scholar 

  • Taghian, T., Narmoneva, D. A. & Kogan, A. B. Modulation of cell function by electric field: A high-resolution analysis. J. R. Soc. Interface 12, 20150153–20150153 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Carter, E. L., Vresilovic, E. J., Pollack, S. R. & Brighton, C. T. Field distribution in vertebral bodies of the rat during electrical stimulation: A parameter study. IEEE Trans. Biomed. Eng. 36, 333–345 (1989).

    PubMed 

    Google Scholar 

  • Clark, C. C., Wang, W. & Brighton, C. T. Up-regulation of expression of selected genes in human bone cells with specific capacitively coupled electric fields. J. Orthop. Res. 32, 894–903 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • Brady, M. A., Waldman, S. D. & Ethier, C. R. The application of multiple biophysical cues to engineer functional neocartilage for treatment of osteoarthritis. Part I: Cellular response. Tissue Eng. Part B Rev. 21, 1–19 (2015).

    PubMed 

    Google Scholar 

  • Pall, M. L. Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell. Mol. Med. 17, 958–965 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fear, E. C. & Stuchly, M. A. Biological cells with gap junctions in low-frequency electric fields. IEEE Trans. Biomed. Eng. 45, 856–866 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • Kadir, L. A., Stacey, M. & Barrett-Jolley, R. Emerging roles of the membrane potential: Action beyond the action potential. Front. Physiol. 9, 1–10 (2018).

    Google Scholar 

  • Cho, M. R., Thatte, H. S., Silvia, M. T. & Golan, D. E. Transmembrane calcium influx induced by ac electric fields. FASEB J. 13, 677–683 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • Budde, K. et al. Requirements for documenting electrical cell stimulation experiments for replicability and numerical modeling. In 2019 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc., 1082–1088 (2019).

  • Escobar, J. F., Vaca-González, J. J. & Garzón-Alvarado, D. A. Effect of magnetic and electric fields on plasma membrane of single cells: A computational approach. Eng. Rep. e12125, 1–14 (2020).

    Google Scholar 

  • Pucihar, G., Kotnik, T., Valič, B. & Miklavčič, D. Numerical determination of transmembrane voltage induced on irregularly shaped cells. Ann. Biomed. Eng. 34, 642–652 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Murovec, T., Sweeney, D. C., Latouche, E., Davalos, R. V. & Brosseau, C. Modeling of transmembrane potential in realistic multicellular structures before electroporation. Biophys. J. 111, 2286–2295. https://doi.org/10.1016/j.bpj.2016.10.005 (2016).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Dirks, H. K. Quasi-stationary fields for microelectronic applications. Electr. Eng. 79, 145–155 (1996).

    Google Scholar 

  • van Rienen, U. et al. Electro-quasistatic simulations in bio-systems engineering and medical engineering. Adv. Radio Sci. 3, 39–49 (2005).

    ADS 

    Google Scholar 

  • Vaca-González, J. J., Guevara, J. M., Vega, J. F. & Garzón-Alvarado, D. A. An in vitro chondrocyte electrical stimulation framework: A methodology to calculate electric fields and modulate proliferation, cell death and glycosaminoglycan synthesis. Cell. Mol. Bioeng. 9, 116–126 (2016).

    Google Scholar 

  • Brighton, C. T., Wang, W. & Clark, C. C. Up-regulation of matrix in bovine articular cartilage explants by electric fields. Biochem. Biophys. Res. Commun. 342, 556–561 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • Vaca-González, J. J. et al. Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis. Bioelectrochemistry 126, 1–11. https://doi.org/10.1016/j.bioelechem.2018.11.004 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kotnik, T., Bobanović, F. & Miklavčič, D. Sensitivity of transmembrane voltage induced by applied electric fields—A theoretical analysis. Bioelectrochem. Bioenerg. 43, 285–291 (1997).

    CAS 

    Google Scholar 

  • Ermolina, I., Polevaya, Y. & Feldman, Y. Analysis of dielectric spectra of eukaryotic cells by computer modeling. Eur. Biophys. J. 29, 141–145 (2000).

    CAS 
    PubMed 

    Google Scholar 

  • Stacey, M. W., Sabuncu, A. C. & Beskok, A. Dielectric characterization of costal cartilage chondrocytes. Biochim. Biophys. Acta Gen. Subj. 1840, 146–152 (2014).

    CAS 

    Google Scholar 

  • Braun, D. & Fromherz, P. Fluorescence interferometry of neuronal cell adhesion on microstructured silicon. Phys. Rev. Lett. 81, 5241–5244 (1998).

    ADS 
    CAS 

    Google Scholar 

  • Braun, D. & Fromherz, P. Imaging neuronal seal resistance on silicon chip using fluorescent voltage-sensitive dye. Biophys. J. 87, 1351–1359 (2004).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tennøe, S., Halnes, G. & Einevoll, G. T. Uncertainpy: A Python toolbox for uncertainty quantification and sensitivity analysis in computational neuroscience. Front. Neuroinform. 12, 1–29 (2018).

    Google Scholar 

  • Huey, D. J., Hu, J. C. & Athanasiou, K. A. Unlike bone, cartilage regeneration remains elusive. Science 338, 917–921 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Brighton, C. T., Okereke, E., Pollack, S. R. & Clark, C. C. In vitro bone-cell response to a capacitively coupled electrical field. Clin. Orthop. Relat. Res. 285, 255–262 (1992).

    Google Scholar 

  • Meny, I., Burais, N., Buret, F. & Nicolas, L. Finite-element modeling of cell exposed to harmonic and transient electric fields. IEEE Trans. Magn. 43, 1773–1776 (2007).

    ADS 

    Google Scholar 

  • Agudelo-Toro, A. & Neef, A. Computationally efficient simulation of electrical activity at cell membranes interacting with self-generated and externally imposed electric fields. J. Neural Eng. 10, 026019 (2013).

  • Ellingsrud, A. J., Solbrå, A., Einevoll, G. T., Halnes, G. & Rognes, M. E. Finite element simulation of ionic electrodiffusion in cellular geometries. Front. Neuroinform. 14, 1–25 (2020).

    Google Scholar 

  • Kuchta, M., Mardal, K.-A. & Rognes, M. E. Solving the EMI equations using finite element methods. In Modeling Excitable Tissue: The EMI Framework (eds Tveito, A. et al.) 56–69 (Springer International Publishing, 2021).

    MATH 

    Google Scholar 

  • Leguèbe, M., Poignard, C. & Weynans, L. A second-order Cartesian method for the simulation of electropermeabilization cell models. J. Comput. Phys. 292, 114–140 (2015).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Guyomarc’h, G., Lee, C. O. & Jeon, K. A discontinuous Galerkin method for elliptic interface problems with application to electroporation. Commun. Numer. Methods Eng. 25, 991–1008 (2009).

    MathSciNet 
    MATH 

    Google Scholar 

  • Perrussel, R. & Poignard, C. Asymptotic expansion of steady-state potential in a high contrast medium with a thin resistive layer. Appl. Math. Comput. 221, 48–65 (2013).

    MathSciNet 
    MATH 

    Google Scholar 

  • Macdonald, J. R. & Johnson, W. B. Fundamentals of impedance spectroscopy. In Impedance Spectroscopy, chap. 1, 1–20 (Wiley, 2005).

  • Lojewska, Z., Farkas, D. L., Ehrenberg, B. & Loew, L. M. Analysis of the effect of medium and membrane conductance on the amplitude and kinetics of membrane potentials induced by externally applied electric fields. Biophys. J. 56, 121–128 (1989).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, X. et al. Imaging the electrochemical impedance of single cells via conductive polymer thin film. ACS Sensors 6, 485–492 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Shamoon, D., Lasquellec, S. & Brosseau, C. Perspective: Towards understanding the multiscale description of cells and tissues by electromechanobiology. J. Appl. Phys. 123, 240902. https://doi.org/10.1063/1.5018723 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Sabri, E. & Brosseau, C. Proximity-induced electrodeformation and membrane capacitance coupling between cells. Eur. Biophys. J. 50, 713–720 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Merla, C. et al. Microdosimetry for nanosecond pulsed electric field applications: A parametric study for a single cell. IEEE Trans. Biomed. Eng. 58, 1294–1302 (2011).

    PubMed 

    Google Scholar 

  • Leguèbe, M., Silve, A., Mir, L. M. & Poignard, C. Conducting and permeable states of cell membrane submitted to high voltage pulses: Mathematical and numerical studies validated by the experiments. J. Theor. Biol. 360, 83–94 (2014).

    ADS 
    PubMed 
    MATH 

    Google Scholar 

  • Asami, K. Dielectric properties of microvillous cells simulated by the three-dimensional finite-element method. Bioelectrochemistry 81, 28–33 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Ciuperca, I. S., Perrussel, R. & Poignard, C. Two-scale analysis for very rough thin layers. An explicit characterization of the polarization tensor. J. des Math. Pures Appl. 95, 277–295 (2011).

    MathSciNet 
    MATH 

    Google Scholar 

  • Wenger, C. et al. A review on tumor-treating fields (TTFields): Clinical implications inferred from computational modeling. IEEE Rev. Biomed. Eng. 11, 195–207 (2018).

    PubMed 

    Google Scholar 

  • Mistani, P., Guittet, A., Poignard, C. & Gibou, F. A parallel Voronoi-based approach for mesoscale simulations of cell aggregate electropermeabilization. J. Comput. Phys. 380, 48–64 (2019).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Mollenhauer, J. A. Perspectives on articular cartilage biology and osteoarthritis. Injury 39, 5–12 (2008).

    Google Scholar 

  • Nagarajan, M. B. et al. Computer-aided diagnosis in phase contrast imaging x-ray computed tomography for quantitative characterization of ex vivo human patellar cartilage. IEEE Trans. Biomed. Eng. 60, 2896–2903 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Marzouk, Y. & Xiu, D. A stochastic collocation approach to Bayesian inference in inverse problems. Commun. Comput. Phys. 6, 826–847 (2009).

    MathSciNet 
    MATH 

    Google Scholar 

  • Schmidt, C., Grant, P., Lowery, M. & van Rienen, U. Influence of uncertainties in the material properties of brain tissue on the probabilistic volume of tissue activated. IEEE Trans. Biomed. Eng. 60, 1378–1387 (2013).

    PubMed 

    Google Scholar 

  • Tveito, A., Jæger, K. H., Kuchta, M., Mardal, K.-A. & Rognes, M. E. A cell-based framework for numerical modeling of electrical conduction in cardiac tissue. Front. Phys. 5, 1–18 (2017).

    Google Scholar 

  • Poignard, C. et al. Ion fluxes, transmembrane potential, and osmotic stabilization: A new dynamic electrophysiological model for eukaryotic cells. Eur. Biophys. J. 40, 235–246 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Casciola, M. & Tarek, M. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Biochim. Biophys. Acta Biomembr. 1858, 2278–2289. https://doi.org/10.1016/j.bbamem.2016.03.022 (2016).

    CAS 
    Article 

    Google Scholar 

  • Haus, H. A. & Melcher, J. R. Electromagnetic Fields and Energy (Prentice Hall, 1989).

    Google Scholar 

  • Bondeson, A., Rylander, T. & Ingelström, P. Computational Electromagnetics, Texts in Applied Mathematics Vol. 51 (Springer, 2005).

    MATH 

    Google Scholar 

  • Roy, C. J. & Oberkampf, W. L. A comprehensive framework for verification, validation, and uncertainty quantification in scientific computing. Comput. Methods Appl. Mech. Eng. 200, 2131–2144 (2011).

    ADS 
    MathSciNet 
    MATH 

    Google Scholar 

  • Lemieux, C. Monte Carlo and Quasi-Monte Carlo Sampling, Springer Series in Statistics (Springer, 2009).

    MATH 

    Google Scholar 

  • Xiu, D. Numerical Methods for Stochastic Computations: A Spectral Method Approach (Princeton University Press, 2010).

    MATH 

    Google Scholar 

  • Eck, V. G. et al. A guide to uncertainty quantification and sensitivity analysis for cardiovascular applications. Int. J. Numer. Method. Biomed. Eng. 32, e02755 (2016).

    MathSciNet 

    Google Scholar 

  • Mazzoleni, A. P., Sisken, B. F. & Kahler, R. L. Conductivity values of tissue culture medium from 20(^circ)C to 40(^circ)C. Bioelectromagnetics 7, 95–99 (1986).

    CAS 
    PubMed 

    Google Scholar 

  • Svorčík, V., Ekrt, O., Rybka, V., Lipták, J. & Hnatowicz, V. Permittivity of polyethylene and polyethyleneterephtalate. J. Mater. Sci. Lett. 19, 1843–1845 (2000).

    Google Scholar 

  • Zheng, Y., Nguyen, J., Wei, Y. & Sun, Y. Recent advances in microfluidic techniques for single-cell biophysical characterization. Lab Chip 13, 2464–2483 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Funabashi, K., Fujii, M., Yamamura, H., Ohya, S. & Imaizumi, Y. Contribution of chloride channel conductance to the regulation of resting membrane potential in chondrocytes. J. Pharmacol. Sci. 113, 94–99 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • Lewis, R. et al. The role of the membrane potential in chondrocyte volume regulation. J. Cell. Physiol. 226, 2979–2986 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Glen, G. & Isaacs, K. Estimating Sobol sensitivity indices using correlations. Environ. Model. Softw. 37, 157–166. https://doi.org/10.1016/j.envsoft.2012.03.014 (2012).

    Article 

    Google Scholar 

  • Source link