Sugimoto, M., Tahara, H., Ide, T. & Furuichi, Y. Steps involved in immortalization and tumorigenesis in human B-lymphoblastoid cell lines transformed by Epstein–Barr virus. Cancer Res. 64, 3361–3364. https://doi.org/10.1158/0008-5472.CAN-04-0079 (2004).
Google Scholar
Omi, N. et al. Efficient and reliable establishment of lymphoblastoid cell lines by Epstein–Barr virus transformation from a limited amount of peripheral blood. Sci. Rep. 7, 43833. https://doi.org/10.1038/srep43833 (2017).
Google Scholar
Pattengale, P. K., Smith, R. W. & Gerber, P. Selective transformation of B lymphocytes by E.B. virus. Lancet 2, 93–94. https://doi.org/10.1016/s0140-6736(73)93286-8 (1973).
Google Scholar
Hirai, K. & Shirakata, M. Replication licensing of the EBV oriP minichromosome. Curr. Top. Microbiol. Immunol. 258, 13–33. https://doi.org/10.1007/978-3-642-56515-1_2 (2001).
Google Scholar
Young, L. S. & Rickinson, A. B. Epstein–Barr virus: 40 years on. Nat. Rev. Cancer 4, 757–768. https://doi.org/10.1038/nrc1452 (2004).
Google Scholar
Price, A. M. & Luftig, M. A. Dynamic Epstein–Barr virus gene expression on the path to B-cell transformation. Adv. Virus Res. 88, 279–313. https://doi.org/10.1016/B978-0-12-800098-4.00006-4 (2014).
Google Scholar
Sie, L., Loong, S. & Tan, E. K. Utility of lymphoblastoid cell lines. J. Neurosci. Res. 87, 1953–1959. https://doi.org/10.1002/jnr.22000 (2009).
Google Scholar
Niu, N. & Wang, L. In vitro human cell line models to predict clinical response to anticancer drugs. Pharmacogenomics 16, 273–285. https://doi.org/10.2217/pgs.14.170 (2015).
Google Scholar
Annesley, S. J. & Fisher, P. R. Lymphoblastoid cell lines as models to study mitochondrial function in neurological disorders. Int. J. Mol. Sci. https://doi.org/10.3390/ijms22094536 (2021).
Google Scholar
Pei, Y., Wong, J. H. Y. & Robertson, E. S. Targeted therapies for Epstein–Barr virus-associated lymphomas. Cancers https://doi.org/10.3390/cancers12092565 (2020).
Google Scholar
Dausset, J. et al. Centre d’etude du polymorphisme humain (CEPH): Collaborative genetic mapping of the human genome. Genomics 6, 575–577 (1990).
Google Scholar
Cann, H. M. Human genome diversity. C. R. Acad. Sci. III(321), 443–446. https://doi.org/10.1016/s0764-4469(98)80774-9 (1998).
Google Scholar
Rosenberg, N. A. et al. Genetic structure of human populations. Science 298, 2381–2385. https://doi.org/10.1126/science.1078311 (2002).
Google Scholar
A haplotype map of the human genome. Nature 437, 1299–1320. https://doi.org/10.1038/nature04226 (2005).
Abecassis, I. et al. Re-expression of DNA methylation-silenced CD44 gene in a resistant NB4 cell line: Rescue of CD44-dependent cell death by cAMP. Leukemia 22, 511–520. https://doi.org/10.1038/sj.leu.2405071 (2008).
Google Scholar
Herbeck, J. T. et al. Fidelity of SNP array genotyping using Epstein Barr virus-transformed B-lymphocyte cell lines: Implications for genome-wide association studies. PLoS One 4, e6915. https://doi.org/10.1371/journal.pone.0006915 (2009).
Google Scholar
Hsieh, P. et al. Adaptive archaic introgression of copy number variants and the discovery of previously unknown human genes. Science https://doi.org/10.1126/science.aax2083 (2019).
Google Scholar
Bergstrom, A. et al. Insights into human genetic variation and population history from 929 diverse genomes. Science https://doi.org/10.1126/science.aay5012 (2020).
Google Scholar
Martin, A. R. et al. Transcriptome sequencing from diverse human populations reveals differentiated regulatory architecture. PLoS Genet. 10, e1004549. https://doi.org/10.1371/journal.pgen.1004549 (2014).
Google Scholar
Stranger, B. E. et al. Patterns of cis regulatory variation in diverse human populations. PLoS Genet. 8, e1002639. https://doi.org/10.1371/journal.pgen.1002639 (2012).
Google Scholar
Jones, T. I., Himeda, C. L., Perez, D. P. & Jones, P. L. Large family cohorts of lymphoblastoid cells provide a new cellular model for investigating facioscapulohumeral muscular dystrophy. Neuromuscul. Disord. 27, 221–238. https://doi.org/10.1016/j.nmd.2016.12.007 (2017).
Google Scholar
Garcia-Perez, R. et al. Epigenomic profiling of primate lymphoblastoid cell lines reveals the evolutionary patterns of epigenetic activities in gene regulatory architectures. Nat. Commun. 12, 3116. https://doi.org/10.1038/s41467-021-23397-1 (2021).
Google Scholar
Niu, N. et al. Metformin pharmacogenomics: A genome-wide association study to identify genetic and epigenetic biomarkers involved in metformin anticancer response using human lymphoblastoid cell lines. Hum. Mol. Genet. 25, 4819–4834. https://doi.org/10.1093/hmg/ddw301 (2016).
Google Scholar
Schafer, C. M. et al. Whole exome sequencing reveals minimal differences between cell line and whole blood derived DNA. Genomics 102, 270–277. https://doi.org/10.1016/j.ygeno.2013.05.005 (2013).
Google Scholar
Tan, Q. et al. Mutation analysis of the EBV-lymphoblastoid cell line cautions their use as antigen-presenting cells. Immunol. Cell Biol. 96, 204–211. https://doi.org/10.1111/imcb.1030 (2018).
Google Scholar
McCarthy, N. S., Allan, S. M., Chandler, D., Jablensky, A. & Morar, B. Integrity of genome-wide genotype data from low passage lymphoblastoid cell lines. Genom. Data 9, 18–21. https://doi.org/10.1016/j.gdata.2016.05.006 (2016).
Google Scholar
Shirley, M. D. et al. Chromosomal variation in lymphoblastoid cell lines. Hum. Mutat. 33, 1075–1086. https://doi.org/10.1002/humu.22062 (2012).
Google Scholar
Joesch-Cohen, L. M. & Glusman, G. Differences between the genomes of lymphoblastoid cell lines and blood-derived samples. Adv. Genom. Genet. 7, 1–9. https://doi.org/10.2147/AGG.S128824 (2017).
Google Scholar
Nickles, D. et al. In depth comparison of an individual’s DNA and its lymphoblastoid cell line using whole genome sequencing. BMC Genom. 13, 477. https://doi.org/10.1186/1471-2164-13-477 (2012).
Google Scholar
Sugawara, H. et al. A 3-bp deletion of mitochondrial DNA tRNALys observed in lymphoblastoid cells. J. Hum. Genet. 54, 612–613. https://doi.org/10.1038/jhg.2009.88 (2009).
Google Scholar
Taniguchi, I., Iwaya, C., Ohnaka, K., Shibata, H. & Yamamoto, K. Genome-wide DNA methylation analysis reveals hypomethylation in the low-CpG promoter regions in lymphoblastoid cell lines. Hum. Genom. 11, 8. https://doi.org/10.1186/s40246-017-0106-6 (2017).
Google Scholar
Sugawara, H. et al. Comprehensive DNA methylation analysis of human peripheral blood leukocytes and lymphoblastoid cell lines. Epigenetics 6, 508–515. https://doi.org/10.4161/epi.6.4.14876 (2011).
Google Scholar
Aberg, K. et al. Methylome-wide comparison of human genomic DNA extracted from whole blood and from EBV-transformed lymphocyte cell lines. Eur. J. Hum. Genet. EJHG 20, 953–955. https://doi.org/10.1038/ejhg.2012.33 (2012).
Google Scholar
Grafodatskaya, D. et al. EBV transformation and cell culturing destabilizes DNA methylation in human lymphoblastoid cell lines. Genomics 95, 73–83. https://doi.org/10.1016/j.ygeno.2009.12.001 (2010).
Google Scholar
Caliskan, M., Cusanovich, D. A., Ober, C. & Gilad, Y. The effects of EBV transformation on gene expression levels and methylation profiles. Hum. Mol. Genet. 20, 1643–1652. https://doi.org/10.1093/hmg/ddr041 (2011).
Google Scholar
Yuan, Y., Tian, L., Lu, D. & Xu, S. Analysis of genome-wide RNA-sequencing data suggests age of the CEPH/Utah (CEU) lymphoblastoid cell lines systematically biases gene expression profiles. Sci. Rep. 5, 7960. https://doi.org/10.1038/srep07960 (2015).
Google Scholar
Toritsuka, M. et al. Altered gene expression in lymphoblastoid cell lines after subculture. In Vitro Cell. Dev. Biol. Anim. 54, 523–527. https://doi.org/10.1007/s11626-018-0267-1 (2018).
Google Scholar
Lopes-Ramos, C. M. et al. Regulatory network changes between cell lines and their tissues of origin. BMC Genom. 18, 723. https://doi.org/10.1186/s12864-017-4111-x (2017).
Google Scholar
Dong, Z. et al. Identification of balanced chromosomal rearrangements previously unknown among participants in the 1000 Genomes Project: Implications for interpretation of structural variation in genomes and the future of clinical cytogenetics. Genet. Med. 20, 697–707. https://doi.org/10.1038/gim.2017.170 (2018).
Google Scholar
Hercberg, S. et al. The SU.VI.MAX Study: A randomized, placebo-controlled trial of the health effects of antioxidant vitamins and minerals. Arch. Intern. Med. 164, 2335–2342. https://doi.org/10.1001/archinte.164.21.2335 (2004).
Google Scholar
Schachter, F. et al. Genetic associations with human longevity at the APOE and ACE loci. Nat. Genet. 6, 29–32. https://doi.org/10.1038/ng0194-29 (1994).
Google Scholar
Blanche, H., Cabanne, L., Sahbatou, M. & Thomas, G. A study of French centenarians: Are ACE and APOE associated with longevity?. C. R. Acad. Sci. III(324), 129–135. https://doi.org/10.1016/s0764-4469(00)01274-9 (2001).
Google Scholar
Daunay, A., Baudrin, L. G., Deleuze, J. F. & How-Kit, A. Evaluation of six blood-based age prediction models using DNA methylation analysis by pyrosequencing. Sci. Rep. 9, 8862. https://doi.org/10.1038/s41598-019-45197-w (2019).
Google Scholar
Thong, Z., Liang Shun Chan, X., Ying Ying Tan, J., Shuzhen Loo, E. & Kiu Choong Syn, C. Evaluation of DNA methylation-based age prediction on blood. Forensic Sci. Int. Genet. Suppl. Ser. 6, e249–e251. https://doi.org/10.1016/j.fsigss.2017.09.095 (2017).
Google Scholar
Garali, I. et al. Improvements and inter-laboratory implementation and optimization of blood-based single-locus age prediction models using DNA methylation of the ELOVL2 promoter. Sci. Rep. 10, 15652. https://doi.org/10.1038/s41598-020-72567-6 (2020).
Google Scholar
Sahin, F., Gerceker, D., Karasartova, D. & Ozsan, T. M. Detection of herpes simplex virus type 1 in addition to Epstein–Bar virus in tonsils using a new multiplex polymerase chain reaction assay. Diagn. Microbiol. Infect. Dis. 57, 47–51. https://doi.org/10.1016/j.diagmicrobio.2006.09.013 (2007).
Google Scholar
Sprouse, J. T. et al. T-cell clonality determination using polymerase chain reaction (PCR) amplification of the T-cell receptor gamma-chain gene and capillary electrophoresis of fluorescently labeled PCR products. Am. J. Clin. Pathol. 113, 838–850. https://doi.org/10.1309/02M7-5JCC-YRTK-MGDR (2000).
Google Scholar
van Dongen, J. J. et al. Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17, 2257–2317. https://doi.org/10.1038/sj.leu.2403202 (2003).
Google Scholar
Campan, M., Weisenberger, D. J., Trinh, B. & Laird, P. W. MethyLight. Methods Mol. Biol. 507, 325–337. https://doi.org/10.1007/978-1-59745-522-0_23 (2009).
Google Scholar
How-Kit, A. et al. Accurate CpG and non-CpG cytosine methylation analysis by high-throughput locus-specific pyrosequencing in plants. Plant Mol. Biol. 88, 471–485. https://doi.org/10.1007/s11103-015-0336-8 (2015).
Google Scholar
How-Kit, A. & Tost, J. Pyrosequencing(R)-based identification of low-frequency mutations enriched through enhanced-ice-COLD-PCR. Methods Mol. Biol. 1315, 83–101. https://doi.org/10.1007/978-1-4939-2715-9_7 (2015).
Google Scholar
Mandage, R. et al. Genetic factors affecting EBV copy number in lymphoblastoid cell lines derived from the 1000 Genome Project samples. PLoS One 12, e0179446. https://doi.org/10.1371/journal.pone.0179446 (2017).
Google Scholar
Wadowsky, R. M., Laus, S., Green, M., Webber, S. A. & Rowe, D. Measurement of Epstein–Barr virus DNA loads in whole blood and plasma by TaqMan PCR and in peripheral blood lymphocytes by competitive PCR. J. Clin. Microbiol. 41, 5245–5249. https://doi.org/10.1128/JCM.41.11.5245-5249.2003 (2003).
Google Scholar
Kimura, H., Ito, Y., Suzuki, R. & Nishiyama, Y. Measuring Epstein–Barr virus (EBV) load: The significance and application for each EBV-associated disease. Rev. Med. Virol. 18, 305–319. https://doi.org/10.1002/rmv.582 (2008).
Google Scholar
Odumade, O. A., Hogquist, K. A. & Balfour, H. H. Jr. Progress and problems in understanding and managing primary Epstein–Barr virus infections. Clin. Microbiol. Rev. 24, 193–209. https://doi.org/10.1128/CMR.00044-10 (2011).
Google Scholar
Krangel, M. S. Mechanics of T cell receptor gene rearrangement. Curr. Opin. Immunol. 21, 133–139. https://doi.org/10.1016/j.coi.2009.03.009 (2009).
Google Scholar
Al-Harthi, L. et al. Detection of T cell receptor circles (TRECs) as biomarkers for de novo T cell synthesis using a quantitative polymerase chain reaction-enzyme linked immunosorbent assay (PCR-ELISA). J. Immunol. Methods 237, 187–197. https://doi.org/10.1016/s0022-1759(00)00136-8 (2000).
Google Scholar
Zubakov, D. et al. Estimating human age from T-cell DNA rearrangements. Curr. Biol. CB 20, R970-971. https://doi.org/10.1016/j.cub.2010.10.022 (2010).
Google Scholar
Valiathan, R., Ashman, M. & Asthana, D. Effects of ageing on the immune system: Infants to elderly. Scand. J. Immunol. 83, 255–266. https://doi.org/10.1111/sji.12413 (2016).
Google Scholar
Yan, J. et al. The effect of ageing on human lymphocyte subsets: Comparison of males and females. Immun. Ageing 7, 4. https://doi.org/10.1186/1742-4933-7-4 (2010).
Google Scholar
Krejci, O., Prouzova, Z., Horvath, O., Trka, J. & Hrusak, O. Cutting edge: TCR delta gene is frequently rearranged in adult B lymphocytes. J. Immunol. 171, 524–527. https://doi.org/10.4049/jimmunol.171.2.524 (2003).
Google Scholar
Fuschiotti, P. et al. Analysis of the TCR alpha-chain rearrangement profile in human T lymphocytes. Mol. Immunol. 44, 3380–3388. https://doi.org/10.1016/j.molimm.2007.02.017 (2007).
Google Scholar
Bottaro, M., Berti, E., Biondi, A., Migone, N. & Crosti, L. Heteroduplex analysis of T-cell receptor gamma gene rearrangements for diagnosis and monitoring of cutaneous T-cell lymphomas. Blood 83, 3271–3278 (1994).
Google Scholar
Jones, M. J., Goodman, S. J. & Kobor, M. S. DNA methylation and healthy human aging. Aging Cell https://doi.org/10.1111/acel.12349 (2015).
Google Scholar
Hannum, G. et al. Genome-wide methylation profiles reveal quantitative views of human aging rates. Mol. Cell 49, 359–367. https://doi.org/10.1016/j.molcel.2012.10.016 (2013).
Google Scholar
Horvath, S. & Raj, K. DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat. Rev. Genet. 19, 371–384. https://doi.org/10.1038/s41576-018-0004-3 (2018).
Google Scholar
Horvath, S. DNA methylation age of human tissues and cell types. Genome Biol. 14, R115. https://doi.org/10.1186/gb-2013-14-10-r115 (2013).
Google Scholar
Coppola, L. et al. Biobanking in health care: Evolution and future directions. J. Transl. Med. 17, 172. https://doi.org/10.1186/s12967-019-1922-3 (2019).
Google Scholar
Annaratone, L. et al. Basic principles of biobanking: From biological samples to precision medicine for patients. Virchows Arch. 479, 233–246. https://doi.org/10.1007/s00428-021-03151-0 (2021).
Google Scholar
Steinberg, K. et al. DNA banking for epidemiologic studies: A review of current practices. Epidemiology 13, 246–254. https://doi.org/10.1097/00001648-200205000-00003 (2002).
Google Scholar
Baker, M. Biorepositories: Building better biobanks. Nature 486, 141–146. https://doi.org/10.1038/486141a (2012).
Google Scholar
Zhou, J. H., Sahin, A. A. & Myers, J. N. Biobanking in genomic medicine. Arch. Pathol. Lab. Med. 139, 812–818. https://doi.org/10.5858/arpa.2014-0261-RA (2015).
Google Scholar
Campbell, L. D. et al. The 2018 revision of the ISBER best practices: Summary of changes and the editorial team’s development process. Biopreserv. Biobank 16, 3–6. https://doi.org/10.1089/bio.2018.0001 (2018).
Google Scholar
Smith, G. et al. Microsatellite markers in biobanking: A new multiplexed assay. Biopreserv. Biobank 19, 438–443. https://doi.org/10.1089/bio.2021.0042 (2021).
Google Scholar
Tzvetkov, M. V., Meineke, I., Sehrt, D., Vormfelde, S. V. & Brockmoller, J. Amelogenin-based sex identification as a strategy to control the identity of DNA samples in genetic association studies. Pharmacogenomics 11, 449–457. https://doi.org/10.2217/pgs.10.14 (2010).
Google Scholar
Chong, Z. L. et al. Diagnostic accuracy and utility of three dengue diagnostic tests for the diagnosis of acute dengue infection in Malaysia. BMC Infect. Dis. 20, 210. https://doi.org/10.1186/s12879-020-4911-5 (2020).
Google Scholar
Pepe, M. S. & Thompson, M. L. Combining diagnostic test results to increase accuracy. Biostatistics 1, 123–140. https://doi.org/10.1093/biostatistics/1.2.123 (2000).
Google Scholar
Jha, H. C., Pei, Y. & Robertson, E. S. Epstein–Barr virus: Diseases linked to infection and transformation. Front. Microbiol. 7, 1602. https://doi.org/10.3389/fmicb.2016.01602 (2016).
Google Scholar
Stowe, R. P. et al. Chronic herpesvirus reactivation occurs in aging. Exp. Gerontol. 42, 563–570. https://doi.org/10.1016/j.exger.2007.01.005 (2007).
Google Scholar
Thomasini, R. L. et al. Aged-associated cytomegalovirus and Epstein–Barr virus reactivation and cytomegalovirus relationship with the frailty syndrome in older women. PLoS One 12, e0180841. https://doi.org/10.1371/journal.pone.0180841 (2017).
Google Scholar
Horvath, S. et al. Decreased epigenetic age of PBMCs from Italian semi-supercentenarians and their offspring. Aging (Albany NY) 7, 1159–1170. https://doi.org/10.18632/aging.100861 (2015).
Google Scholar
Horvath, S. et al. Epigenetic clock for skin and blood cells applied to Hutchinson Gilford Progeria Syndrome and ex vivo studies. Aging (Albany NY) 10, 1758–1775. https://doi.org/10.18632/aging.101508 (2018).
Google Scholar

