Preloader

A review of multilayer and composite films and coatings for active biodegradable packaging

  • Muncke, J. Tackling the toxics in plastics packaging. PLoS Biol. 19, e3000961 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Motelica, L. et al. Biodegradable antimicrobial food packaging: Trends and perspectives. Foods 9, 1–36 (2020).

  • Debeaufort, F. & Voilley, J.-A. Q.-G. A. Edible films and coatings: tomorrow’s packagings: a review. Food Sci. Nutr. 38, 299–313 (2010).

    Google Scholar 

  • Barbosa, C. H., Andrade, M. A., Vilarinho, F., Fernando, A. L. & Silva, A. S. Active edible packaging. Encyclopedia 1, 360–370 (2021).

    Google Scholar 

  • Ribeiro, A. M., Estevinho, B. N. & Rocha, F. Preparation and incorporation of functional ingredients in edible films and coatings. Food Bioprocess Technol. 14, 209–231 (2021).

    CAS 

    Google Scholar 

  • Almasi, H., Jahanbakhsh Oskouie, M. & Saleh, A. A review on techniques utilized for design of controlled release food active packaging. Crit. Rev. Food Sci. Nutri. 61, 2601–2621 (2020).

  • Mastromatteo, M., Mastromatteo, M., Conte, A. & Del Nobile, M. A. Advances in controlled release devices for food packaging applications. Trends Food Sci. Technol. 21, 591–598 (2010).

    CAS 

    Google Scholar 

  • Aloui, H. & Khwaldia, K. Natural antimicrobial edible coatings for microbial safety and food quality enhancement. Compr. Rev. Food Sci. Food Saf. 15, 1080–1103 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Arnon-Rips, H. & Poverenov, E. Improving food products’ quality and storability by using layer by layer edible coatings. Trends Food Sci. Technol. 75, 81–92 (2018).

    CAS 

    Google Scholar 

  • Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A. & Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 22, 292–303 (2011).

    CAS 

    Google Scholar 

  • Xia, C., Wang, W., Wang, L., Liu, H. & Xiao, J. Multilayer zein/gelatin films with tunable water barrier property and prolonged antioxidant activity. Food Packaging Shelf Life 19, 76–85 (2019).

    CAS 

    Google Scholar 

  • Anukiruthika, T. et al. Multilayer packaging: advances in preparation techniques and emerging food applications. Compr. Rev. Food Sci. Food Saf. 19, 1156–1186 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Sharma, R., Jafari, S. M. & Sharma, S. Antimicrobial bio-nanocomposites and their potential applications in food packaging. Food Control 112, 107086 (2020).

    CAS 

    Google Scholar 

  • Cozzolino, C. A. et al. Exploiting the nano-sized features of microfibrillated cellulose (MFC) for the development of controlled-release packaging. Colloids Surf. B: Biointerfaces 110, 208–216 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Narayanan, A., Mallesha, N. & Ramana, K. V. Synergized antimicrobial activity of eugenol incorporated polyhydroxybutyrate films against food spoilage microorganisms in conjunction with pediocin. Appl. Biochem. Biotechnol. 170, 1379–1388 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Neo, Y. P. et al. Evaluation of gallic acid loaded zein sub-micron electrospun fibre mats as novel active packaging materials. Food Chem. 141, 3192–3200 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Wu, Y. M., Wang, Z. W., Hu, C. Y. & Nerín, C. Influence of factors on release of antimicrobials from antimicrobial packaging materials. Crit. Rev. Food Sci. Nutr. 58, 1108–1121 (2018).

    PubMed 

    Google Scholar 

  • Quiles-Carrillo, L., Montanes, N., Lagaron, J. M., Balart, R. & Torres-Giner, S. Bioactive multilayer polylactide films with controlled release capacity of gallic acid accomplished by incorporating electrospun nanostructured coatings and interlayers. Appl. Sci. 9, 533 (2019).

  • Wang, S., Liu, R., Fu, Y., & Kao, W. J. Release mechanisms and applications of drug delivery systems for extended-release. Expert Opin. Drug Del. 17, 1289–1304 (2020).

  • Jakobek, L. Interactions of polyphenols with carbohydrates, lipids and proteins. Food Chem. 175, 556–567 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Bacskay, G. B., Reimers, J. R. & Nordholm, S. The mechanism of covalent bonding. J. Chem. Educ. 74, 1494–1502 (1997).

    CAS 

    Google Scholar 

  • Li, S. et al. Development of antibacterial nanoemulsions incorporating thyme oil: layer-by-layer self-assembly of whey protein isolate and chitosan hydrochloride. Food Chem. 339, 128016 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Liu, F., Ma, C., Gao, Y. & McClements, D. J. Food-grade covalent complexes and their application as nutraceutical delivery systems: A review. Compr. Rev. Food Sci. Food Saf. 16, 76–95 (2017).

  • Deng, L. et al. Development of disulfide bond crosslinked gelatin/ε-polylysine active edible film with antibacterial and antioxidant activities. Food Bioprocess Technol. 13, 577–588 (2020).

    CAS 

    Google Scholar 

  • Benbettaïeb, N., Karbowiak, T. & Debeaufort, F. Bioactive edible films for food applications: influence of the bioactive compounds on film structure and properties. Crit. Rev. Food Sci. Nutr. 59, 1137–1153 (2019).

    PubMed 

    Google Scholar 

  • Talón, E., Trifkovic, K. T., Vargas, M., Chiralt, A. & González-Martínez, C. Release of polyphenols from starch-chitosan based films containing thyme extract. Carbohydr. Polym. 175, 122–130 (2017).

    PubMed 

    Google Scholar 

  • Chen, X., Xiao, J., Cai, J. & Liu, H. Phase separation behavior in zein-gelatin composite film and its modulation effects on retention and release of multiple bioactive compounds. Food Hydrocoll. 109, 106105 (2020).

    CAS 

    Google Scholar 

  • Uz, M. & Alsoy, S. Development of mono and multilayer antimicrobial food packaging materials for controlled release of potassium sorbate. LWT – Food Sci. Technol. 44, 2302–2309 (2011).

    CAS 

    Google Scholar 

  • Zhang, X., Chen, H., Zhang, H. & Chen, H. Layer-by-layer assembly: from conventional to unconventional methods. Chem. Commun. 14, 1395–1405 (2007).

    Google Scholar 

  • Decher, G. & Hong, J. D. Buildup of ultrathin multilayer films by a self-assembly process: II. consecutive adsorption of anionic and cationic bipolar amphiphiles and polyelectrolytes on charged surfaces. Ber. der Bunsenges. f.ür. physikalische Chem. 95, 1430–1434 (1991).

    CAS 

    Google Scholar 

  • Calva-Estrada, S. J., Jiménez-Fernández, M. & Lugo-Cervantes, E. Protein-based films: advances in the development of biomaterials applicable to food packaging. Food Eng. Rev. 11, 78–92 (2019).

    CAS 

    Google Scholar 

  • Hassan, B., Chatha, S. A. S., Hussain, A. I., Zia, K. M. & Akhtar, N. Recent advances on polysaccharides, lipids and protein based edible films and coatings: A review. Int. J. Biol. Macromolecules 109, 1095–1107 (2018).

  • Anu Bhushani, J. & Anandharamakrishnan, C. Electrospinning and electrospraying techniques: potential food based applications. Trends Food Sci. Technol. 38, 21–33 (2014).

    CAS 

    Google Scholar 

  • Zhao, L. et al. Electrospun functional materials toward food packaging applications: a review. Nanomaterials 10, 1–31 (2020).

    CAS 

    Google Scholar 

  • Fabra, M. J., Busolo, M. A., Lopez-Rubio, A. & Lagaron, J. M. Nanostructured biolayers in food packaging. Trends Food Sci. Technol. 31, 79–87 (2013).

    CAS 

    Google Scholar 

  • Kriegel, C., Arrechi, A., Kit, K., McClements, D. J. & Weiss, J. Fabrication, functionalization, and application of electrospun biopolymer nanofibers. Crit. Rev. Food Sci. Nutr. 48, 775–797 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • Reneker, D. H. & Yarin, A. L. Electrospinning jets and polymer nanofibers. Polymer 49, 2387–2425 (2008).

    CAS 

    Google Scholar 

  • Brandenberger, H., Nüssli, D., Piëch, V. & Widmer, F. Monodisperse particle production: a method to prevent drop coalescence using electrostatic forces. J. Electrost. 45, 227–238 (1999).

    CAS 

    Google Scholar 

  • Jaworek, A. & Sobczyk, A. T. Electrospraying route to nanotechnology: an overview. J. Electrost. 66, 197–219 (2008).

    CAS 

    Google Scholar 

  • Messin, T. et al. Confinement effect in PC/MXD6 multilayer films: impact of the microlayered structure on water and gas barrier properties. J. Membr. Sci. 525, 135–145 (2017).

    CAS 

    Google Scholar 

  • Hernandez-Izquierdo, V. M. & Krochta, J. M. Thermoplastic processing of proteins for film formation—a review. J. Food Sci. 73, 30–39 (2008).

    Google Scholar 

  • Andreuccetti, C. et al. Functional properties of gelatin-based films containing Yucca schidigera extract produced via casting, extrusion and blown extrusion processes: a preliminary study. J. Food Eng. 113, 33–40 (2012).

    CAS 

    Google Scholar 

  • Liu, H., Xie, F., Yu, L., Chen, L. & Li, L. Thermal processing of starch-based polymers. Prog. Polym. Sci. 34, 1348–1368 (2009).

    CAS 

    Google Scholar 

  • Lacoste, A., Schaich, K. M., Zumbrunnen, D. & Yam, K. L. Advancing controlled release packaging through smart blending. Packaging Technol. Sci. 18, 77–87 (2005).

    CAS 

    Google Scholar 

  • Chen, W. et al. Fortification of edible films with bioactive agents: a review of their formation, properties, and application in food preservation. Crit. Rev. Food Sci. Nutr. 1–27. https://doi.org/10.1080/10408398.2021.1881435 (2021).

  • Li, M. et al. Extrusion processing and characterization of edible starch films with different amylose contents. J. Food Eng. 106, 95–101 (2011).

    CAS 

    Google Scholar 

  • Türe, H., Gällstedt, M. & Hedenqvist, M. S. Antimicrobial compression-moulded wheat gluten films containing potassium sorbate. Food Res. Int. 45, 109–115 (2012).

    Google Scholar 

  • Ciannamea, E. M., Stefani, P. M. & Ruseckaite, R. A. Physical and mechanical properties of compression molded and solution casting soybean protein concentrate based films. Food Hydrocoll. 38, 193–204 (2014).

    CAS 

    Google Scholar 

  • Rhim, J. W., Mohanty, K. A., Singh, S. P. & Ng, P. K. W. Preparation and properties of biodegradable multilayer films based on soy protein isolate and poly(lactide). Ind. Eng. Chem. Res. 45, 3059–3066 (2006).

    CAS 

    Google Scholar 

  • Suhag, R., Kumar, N., Petkoska, A. T. & Upadhyay, A. Film formation and deposition methods of edible coating on food products: a review. Food Res. Int. 136, 109582 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Fu, Y. & Kao, W. J. Drug release kinetics and transport mechanisms of non-degradable and degradable polymeric delivery systems. Expert Opin. Drug Deliv. 7, 429–444 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pothakamury, U. R. & Barbosa-Cánovas, G. V. Fundamental aspects of controlled release in foods. Trends Food Sci. Technol. 6, 397–406 (1995).

    CAS 

    Google Scholar 

  • Lecomte, F., Siepmann, J., Walther, M., MacRae, R. J. & Bodmeier, R. pH-sensitive polymer blends used as coating materials to control drug release from spherical beads: elucidation of the underlying mass transport mechanisms. Pharm. Res. 22, 1129–1141 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • Peppas, N. Chemical and physical structure of polymers as carriers for controlled release of bioactive agents: A review. J. Macromol. Sci. Part C 23, 61–126 (1983).

  • Jahromi, A. K., Shieh, H. & Saadatmand, M. Theoretical study of diffusional release of a dispersed solute from cylindrical polymeric matrix: a novel configuration for providing zero-order release profile. Appl. Math. Model. 73, 136–145 (2019).

    Google Scholar 

  • Siegel, R. A. Theoretical analysis of inward hemispheric release above and below drug solubility. J. Controlled Release 69, 109–126 (2000).

    CAS 

    Google Scholar 

  • Lee, P. I. Kinetics of drug release from hydrogel matrices. J. Controlled Release 2, 277–288 (1985).

    CAS 

    Google Scholar 

  • Vahabzadeh, F., Najafi, A. & Zivdar M. Micro encapsulation of orange oil by complex coacervation and its release behavior. Int J Eng-iran. 17, 325–334 (2004).

  • Thomas, N. L. & Windle, A. H. A theory of case II diffusion. Polymer 23, 529–542 (1982).

    CAS 

    Google Scholar 

  • Papanu, J. S., Soane Soong, D. S., Bell, A. T. & Hess, D. W. Transport models for swelling and dissolution of thin polymer films. J. Appl. Polym. Sci. 38, 859–885 (1989).

    CAS 

    Google Scholar 

  • Colombo, P., Bettini, R., Santi, P., De Ascentiis, A. & Peppas, N. A. Analysis of the swelling and release mechanisms from drug delivery systems with emphasis on drug solubility and water transport. J. Controlled Release 39, 231–237 (1996).

    CAS 

    Google Scholar 

  • Siepmann, J. & Göpferich, A. Mathematical modeling of bioerodible, polymeric drug delivery systems. Adv. Drug Deliv. Rev. 48, 229–247 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • von Burkersroda, F., Schedl, L. & G.opferich, A. Why degradable polymers undergo surface erosion or bulk erosion. Biomaterials 23, 4221–4231 (2002).

    Google Scholar 

  • Hopfenberg, H. B. Controlled release from erodible slabs, cylinders, and spheres. In (ACS Symposium Series), Controlled Release Polymeric Formulations. vol 3, 26–32 (1976).

  • Wang, P. et al. Characterization and antioxidant activity of trilayer gelatin/dextran-propyl gallate/gelatin films: Electrospinning versus solvent casting. LWT – Food Sci. Technol. 128, 109536 (2020).

    CAS 

    Google Scholar 

  • Sirc, J. et al. Controlled gentamicin release from multi-layered electrospun nanofibrous structures of various thicknesses. Int. J. Nanomed. 7, 5315–5325 (2012).

    CAS 

    Google Scholar 

  • Cerqueira, M. A. et al. Use of electrospinning to develop antimicrobial biodegradable multilayer systems: encapsulation of cinnamaldehyde and their physicochemical characterization. Food Bioprocess Technol. 9, 1874–1884 (2016).

    CAS 

    Google Scholar 

  • Zhang, W., Shu, C., Chen, Q., Cao, J. & Jiang, W. The multi-layer film system improved the release and retention properties of cinnamon essential oil and its application as coating in inhibition to penicillium expansion of apple fruit. Food Chem. 299, 125109 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Gu, B. et al. A sandwich-like chitosan-based antibacterial nanocomposite film with reduced graphene oxide immobilized silver nanoparticles. Carbohydr. Polym. 260, 117835 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Carrizo, D., Taborda, G., Nerín, C. & Bosetti, O. Extension of shelf life of two fatty foods using a new antioxidant multilayer packaging containing green tea extract. Innovative Food Sci. Emerg. Technol. 33, 534–541 (2016).

    CAS 

    Google Scholar 

  • Chen, X., Chen, M., Xu, C. & Yam, K. L. Critical review of controlled release packaging to improve food safety and quality. Crit. Rev. Food Sci. Nutr. 59, 2386–2399 (2019).

    PubMed 

    Google Scholar 

  • Dušek, K. & Dušková-Smrčková, M. Network structure formation during crosslinking of organic coating systems. Prog. Polym. Sci. 25, 1215–1260 (2000).

    Google Scholar 

  • Garavand, F., Rouhi, M., Razavi, S. H., Cacciotti, I. & Mohammadi, R. Improving the integrity of natural biopolymer films used in food packaging by crosslinking approach: a review. Int. J. Biol. Macromolecules 104, 687–707 (2017).

    CAS 

    Google Scholar 

  • Balaguer, M. P., Gómez-Estaca, J., Gavara, R. & Hernandez-Munoz, P. Functional properties of bioplastics made from wheat gliadins modified with cinnamaldehyde. J. Agric. Food Chem. 59, 6689–6695 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Menzel, C. et al. Molecular structure of citric acid cross-linked starch films. Carbohydr. Polym. 96, 270–276 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Azeredo, H. M. C. & Waldron, K. W. Crosslinking in polysaccharide and protein films and coatings for food contact—a review. Trends Food Sci. Technol. 52, 109–122 (2016).

    CAS 

    Google Scholar 

  • Ma, W., Tang, C. H., Yin, S. W., Yang, X. Q. & Qi, J. R. Genipin-crosslinked gelatin films as controlled releasing carriers of lysozyme. Food Res. Int. 51, 321–324 (2013).

    CAS 

    Google Scholar 

  • Zhu, J. Y. et al. Development and characterization of multifunctional gelatin-lysozyme films via the oligomeric proanthocyanidins (OPCs) crosslinking approach. Food Biophysics 12, 451–461 (2017).

    Google Scholar 

  • Fajardo, P., Pau, M., Gomez-estaca, J., Gavara, R. & Hernandez-munoz, P. Chemically modified gliadins as sustained release systems for lysozyme. Food Hydrocoll. 41, 53–59 (2014).

    CAS 

    Google Scholar 

  • López De Dicastillo, C., Rodríguez, F., Guarda, A. & Galotto, M. J. Antioxidant films based on cross-linked methyl cellulose and native Chilean berry for food packaging applications. Carbohydr. Polym. 136, 1052–1060 (2016).

    PubMed 

    Google Scholar 

  • Arnon-Rips, H., Cohen, Y., Saidi, L., Porat, R. & Poverenov, E. Covalent linkage of bioactive volatiles to a polysaccharide support as a potential approach for preparing active edible coatings and delivery systems for food products. Food Chem. 338, 127822 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Basu, S., Pacelli, S. & Paul, A. Self-healing DNA-based injectable hydrogels with reversible covalent linkages for controlled drug delivery. Acta Biomaterialia 105, 159–169 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • Carli, S. et al. Biochemically controlled release of dexamethasone covalently bound to PEDOT. Chem. – A Eur. J. 24, 10300–10305 (2018).

    CAS 

    Google Scholar 

  • Miller, K. S. & Krochta, J. M. Oxygen and aroma barrier properties of edible films: a review. Trends Food Sci. Technol. 8, 228–237 (1997).

    CAS 

    Google Scholar 

  • Hosseini, S. F., Javidi, Z. & Rezaei, M. Efficient gas barrier properties of multi-layer films based on poly(lactic acid) and fish gelatin. Int. J. Biol. Macromolecules 92, 1205–1214 (2016).

    CAS 

    Google Scholar 

  • Tampau, A., González-Martínez, C. & Chiralt, A. Release kinetics and antimicrobial properties of carvacrol encapsulated in electrospun poly-(ε-caprolactone) nanofibres. Application in starch multilayer films. Food Hydrocoll. 79, 158–169 (2018).

    CAS 

    Google Scholar 

  • Zheng, K. et al. Chitosan-acorn starch-eugenol edible film: physico-chemical, barrier, antimicrobial, antioxidant and structural properties. Int. J. Biol. Macromolecules 135, 344–352 (2019).

    CAS 

    Google Scholar 

  • Meyers, M. A., Chen, P. Y., Lin, A. Y. M. & Seki, Y. Biological materials: structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    CAS 

    Google Scholar 

  • Cerqueira, M. A., Torres-Giner, S. & Lagaron, J. M. Chapter 6-Nanostructured multilayer films. Editor(s): Cerqueira, M. A., Lagaron J. M., Castro L. M., Vicente A. A. In Nanomaterials for Food Packaging, 147–171 (Elsevier, 2018).

  • Wang, W. et al. Fabrication and characterization of multilayered kafirin/gelatin film with one-way water barrier property. Food Hydrocoll. 81, 159–168 (2018).

    CAS 

    Google Scholar 

  • Wu, H. et al. Effect of citric acid induced crosslinking on the structure and properties of potato starch/chitosan composite films. Food Hydrocoll. 97, 105208 (2019).

    CAS 

    Google Scholar 

  • Sun, L. et al. Preparation and characterization of chitosan film incorporated with thinned young apple polyphenols as an active packaging material. Carbohydr. Polym. 163, 81–91 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Pillai, C. K. S. Recent advances in biodegradable polymeric materials. Materi. Sci. Tech-lond. 30, 558–566 (2014).

  • Ke, C. L., Deng, F. S., Chuang, C. Y. & Lin, C. H. Antimicrobial actions and applications of chitosan. Polymers 13, 904 (2021).

  • Zhou, Z. et al. A plant leaf-mimetic membrane with controllable gas permeation for efficient preservation of perishable products. ACS Nano 15, 8742–8752 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Yan, J. et al. Preparation and property studies of chitosan-PVA biodegradable antibacterial multilayer films doped with Cu2O and nano-chitosan composites. Food Control 126, 108049 (2021).

    CAS 

    Google Scholar 

  • Wu, W., Ni, X., Shao, P. & Gao, H. Novel packaging film for humidity-controlled manipulating of ethylene for shelf-life extension of Agaricus bisporus. LWT – Food Sci. Technol. 145, 111331 (2021).

    CAS 

    Google Scholar 

  • Dong, T. et al. Evaluation of the effects of prepared antibacterial multilayer film on the quality and shelf-life stability of chilled meat. J. Food Process. Preservation 41, 1–10 (2017).

    CAS 

    Google Scholar 

  • Jung, S. et al. Multifunctional bio-nanocomposite coatings for perishable fruits. Adv. Mater. 32, 1908291 (2020).

  • Yang, Y. et al. Preparation and functional properties of poly(vinyl alcohol)/ethyl cellulose/tea polyphenol electrospun nanofibrous films for active packaging material. Food Control 130, 108331 (2021).

    CAS 

    Google Scholar 

  • Jeyakumari, A., Zynudheen, A. A., Binsi, P. K., Parvathy, U. & Ravishankar, C. N. Microencapsulation of fish oil-oregano essential oil blends by spray drying and its oxidative stability. J. Agric. Sci. Technol. 19, 1–12 (2017).

    Google Scholar 

  • Oliveira, S. P. L. F., Bertan, L. C., De Rensis, C. M. V. B., Bilck, A. P. & Vianna, P. C. B. Whey protein-based films incorporated with oregano essential oil. Polimeros 27, 158–164 (2017).

    Google Scholar 

  • Balan, G. C. et al. Production of wheat flour/PBAT active films incorporated with oregano oil microparticles and its application in fresh pastry conservation. Food Bioprocess Technol. 14, 1587–1599 (2021).

    CAS 

    Google Scholar 

  • Kodal Coşkun, B., Çalikoǧlu, E., Karagöz Emiroǧlu, Z. & Candoǧan, K. Antioxidant active packaging with soy edible films and oregano or thyme essential oils for oxidative stability of ground beef patties. J. Food Qual. 37, 203–212 (2014).

    Google Scholar 

  • Zinoviadou, K. G., Koutsoumanis, K. P. & Biliaderis, C. G. Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci. 82, 338–345 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • Rao, P. V. & Gan, S. H. Cinnamon: a multifaceted medicinal plant. Evidence-based Complementary Alternative Med. 2014, 642942 (2014).

  • Amiri, S. & Rahimi, A. Poly(ε-caprolactone) electrospun nanofibers containing cinnamon essential oil nanocapsules: a promising technique for controlled release and high solubility. J. Ind. Text. 48, 1527–1544 (2019).

    CAS 

    Google Scholar 

  • Iamareerat, B., Singh, M., Sadiq, M. B. & Anal, A. K. Reinforced cassava starch based edible film incorporated with essential oil and sodium bentonite nanoclay as food packaging material. J. Food Sci. Technol. 55, 1953–1959 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Liu, H. et al. Preparation of soy protein isolate (SPI)-pectin complex film containing cinnamon oil and its effects on microbial growth of dehydrated soybean curd (Dry Tofu). J. Food Process. Preservation 38, 1371–1376 (2014).

    CAS 

    Google Scholar 

  • Ferreira, R. R., Souza, A. G., Quispe, Y. M. & Rosa, D. S. Essential oils loaded-chitosan nanocapsules incorporation in biodegradable starch films: a strategy to improve fruits shelf life. Int. J. Biol. Macromolecules 188, 628–638 (2021).

    CAS 

    Google Scholar 

  • Yang, Z., Peng, H., Wang, W. & Liu, T. Blending of low-density polyethylene with vanillin for improved barrier and aroma-releasing properties in food packaging. J. Appl. Polym. Sci. 116, 2658–2667 (2010).

    CAS 

    Google Scholar 

  • Kayaci, F. & Uyar, T. Solid inclusion complexes of vanillin with cyclodextrins: their formation, characterization, and high-temperature stability. J. Agric. Food Chem. 59, 11772–11778 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • Lee, K. Y., Lee, J. H., Yang, H. J. & Song, K. B. Characterization of a starfish gelatin film containing vanillin and its application in the packaging of crab stick. Food Sci. Biotechnol. 25, 1023–1028 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yang, H. J., Lee, J. H., Lee, K. Y., Song, K. & Bin Antimicrobial effect of an Undaria pinnatifida composite film containing vanillin against Escherichia coli and its application in the packaging of smoked chicken breast. Int. J. Food Sci. Technol. 52, 398–403 (2017).

    CAS 

    Google Scholar 

  • Zhang, W., Jiang, H., Rhim, J. W., Cao, J. & Jiang, W. Tea polyphenols (TP): a promising natural additive for the manufacture of multifunctional active food packaging films. Crit. Rev. Food Sci. Nutri. 1–14. https://doi.org/10.1080/10408398.2021.1946007 (2021).

  • Namal Senanayake, S. P. J. Green tea extract: chemistry, antioxidant properties and food applications—a review. J. Funct. Foods 5, 1529–1541 (2013).

    CAS 

    Google Scholar 

  • Yang, H. J., Lee, J. H., Won, M. & Song, K. B. Antioxidant activities of distiller dried grains with solubles as protein films containing tea extracts and their application in the packaging of pork meat. Food Chem. 196, 174–179 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Bilgin Fıçıcılar, B., Gençcelep, H. & Özen, T. Effects of bay leaf (Laurus nobilis) and green tea (Camellia sinensis) extracts on the physicochemical properties of the marinated anchovies with vacuum packaging. CYTA – J. Food 16, 848–858 (2018).

    Google Scholar 

  • Wrona, M., Bentayeb, K. & Nerín, C. A novel active packaging for extending the shelf-life of fresh mushrooms (Agaricus bisporus). Food Control 54, 200–207 (2015).

    CAS 

    Google Scholar 

  • Mujeeb Rahman, P., Abdul Mujeeb, V. M. & Muraleedharan, K. Chitosan–green tea extract powder composite pouches for extending the shelf life of raw meat. Polym. Bull. 74, 3399–3419 (2017).

    CAS 

    Google Scholar 

  • Lu, R. et al. Medical applications based on supramolecular self-assembled materials from tannic acid. Front. Chem. 8, 871 (2020).

  • Ringwald, C. & Ball, V. Step-by-step deposition of type B gelatin and tannic acid displays a peculiar ionic strength dependence at pH 5. RSC Adv. 6, 4730–4738 (2016).

    CAS 

    Google Scholar 

  • Hazer, B. & Ashby, R. D. Synthesis of a novel tannic acid-functionalized polypropylene as antioxidant active-packaging materials. Food Chem. 344, 128644 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Zhang, C. et al. Physical properties and bioactivities of chitosan/gelatin-based films loaded with tannic acid and its application on the preservation of fresh-cut apples. LWT – Food Sci. Technol. 144, 111223 (2021).

    CAS 

    Google Scholar 

  • Suntres, Z. E., Coccimiglio, J. & Alipour, M. The bioactivity and toxicological actions of carvacrol. Crit. Rev. Food Sci. Nutr. 55, 304–318 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • Yildiz, Z. I., Celebioglu, A., Kilic, M. E., Durgun, E. & Uyar, T. Fast-dissolving carvacrol/cyclodextrin inclusion complex electrospun fibers with enhanced thermal stability, water solubility, and antioxidant activity. J. Mater. Sci. 53, 15837–15849 (2018).

    CAS 

    Google Scholar 

  • Wang, L., Heising, J., Fogliano, V. & Dekker, M. Fat content and storage conditions are key factors on the partitioning and activity of carvacrol in antimicrobial packaging. Food Packaging Shelf Life 24, 100500 (2020).

    Google Scholar 

  • Velázquez-Contreras, F. et al. Effect of pla active packaging containing monoterpene-cyclodextrin complexes on berries preservation. Polymers 13, 1–17 (2021).

    Google Scholar 

  • Lim, G. O., Hong, Y. H. & Song, K. B. Application of gelidium corneum edible films containing carvacrol for ham packages. J. Food Sci. 75, 90–93 (2010).

    Google Scholar 

  • Sangsuwan, J., Rattanapanone, N. & Pongsirikul, I. Development of active chitosan films incorporating potassium sorbate or vanillin to extend the shelf life of butter cake. Int. J. Food Sci. Technol. 50, 323–330 (2015).

    CAS 

    Google Scholar 

  • Marcuzzo, E., Peressini, D. & Sensidoni, A. Shelf life of short ripened soft cheese stored under various packaging conditions. J. Food Process. Preservation 37, 1094–1102 (2013).

    CAS 

    Google Scholar 

  • Sousa, G. M., Yamashita, F. & Soares Júnior, M. S. Application of biodegradable films made from rice flour, poly(butylene adipate-co-terphthalate), glycerol and potassium sorbate in the preservation of fresh food pastas. LWT – Food Sci. Technol. 65, 39–45 (2016).

    CAS 

    Google Scholar 

  • del Olmo, A., Calzada, J. & Nuñez, M. Benzoic acid and its derivatives as naturally occurring compounds in foods and as additives: Uses, exposure, and controversy. Crit. Rev. Food Sci. Nutr. 57, 3084–3103 (2017).

    PubMed 

    Google Scholar 

  • Dobiáš, J., Chudackova, K., Voldrich, M. & Marek, M. Properties and polyethylene films with incorporated benzoic anhydride and/or ethyl and propyl esters of 4-hydroxybenzoic acid and their suitability for food packaging. Food Addit. Contam. 17, 1047–1053 (2000).

    PubMed 

    Google Scholar 

  • Leśnierowski, G. & Yang, T. Lysozyme and its modified forms: a critical appraisal of selected properties and potential. Trends Food Sci. Technol. 107, 333–342 (2021).

    Google Scholar 

  • Cegielska-Radziejewska, R. et al. The effect of modified lysozyme treatment on the microflora, physicochemical and sensory characteristics of pork packaged in preservative gas atmospheres. Coatings 11, 1–14 (2021).

    Google Scholar 

  • Glicerina, V. et al. Efficacy of biodegradable, antimicrobial packaging on safety and quality parameters maintenance of a pear juice and rice milk-based smoothie product. Food Control 128, 108170 (2021).

    CAS 

    Google Scholar 

  • Ünalan, I. U., Korel, F. & Yemenicioǧlu, A. Active packaging of ground beef patties by edible zein films incorporated with partially purified lysozyme and Na2EDTA. Int. J. Food Sci. Technol. 46, 1289–1295 (2011).

    Google Scholar 

  • Bahrami, A., Delshadi, R., Jafari, S. M. & Williams, L. Nanoencapsulated nisin: an engineered natural antimicrobial system for the food industry. Trends Food Sci. Technol. 94, 20–31 (2019).

    CAS 

    Google Scholar 

  • Gharsallaoui, A., Joly, C., Oulahal, N. & Degraeve, P. Nisin as a food preservative: part 2: antimicrobial polymer materials containing nisin. Crit. Rev. Food Sci. Nutr. 56, 1275–1289 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • Tu, L. & Mustapha, A. Reduction of Brochothrix thermosphacta and Salmonella serotype Typhimurium on vacuum-packaged fresh beef treated with nisin and nisin combined with EDTA. J. Food Sci. 67, 302–306 (2002).

    CAS 

    Google Scholar 

  • Yang, Y., Liu, H., Wu, M., Ma, J. & Lu, P. Bio-based antimicrobial packaging from sugarcane bagasse nanocellulose/nisin hybrid films. Int. J. Biol. Macromolecules 161, 627–635 (2020).

    CAS 

    Google Scholar 

  • Franklin, N. B., Cooksey, K. D. & Getty, K. J. K. Inhibition of Listeria monocytogenes on the surface of individually packaged hot dogs with a packaging film coating containing nisin. J. Food Prot. 67, 480–485 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • Leelaphiwat, P., Pechprankan, C., Siripho, P., Bumbudsanpharoke, N. & Harnkarnsujarit, N. Effects of nisin and EDTA on morphology and properties of thermoplastic starch and PBAT biodegradable films for meat packaging. Food Chem. 369, 130956 (2021).

    PubMed 

    Google Scholar 

  • Rodríguez, J. M., Martínez, M. I. & Kok, J. Pediocin PA-1, a wide-spectrum bacteriocin from lactic acid bacteria. Crit. Rev. Food Sci. Nutr. 42, 91–121 (2002).

    PubMed 

    Google Scholar 

  • Santiago-Silva, P. et al. Antimicrobial efficiency of film incorporated with pediocin (ALTA® 2351) on preservation of sliced ham. Food Control 20, 85–89 (2009).

    CAS 

    Google Scholar 

  • Woraprayote, W. et al. Anti-listeria activity of poly(lactic acid)/sawdust particle biocomposite film impregnated with pediocin PA-1/AcH and its use in raw sliced pork. Int. J. Food Microbiol. 167, 229–235 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • Kraśniewska, K., Galus, S. & Gniewosz, M. Biopolymers-based materials containing silver nanoparticles as active packaging for food applications—a review. Int. J. Mol. Sci. 21, 698 (2020).

  • Pal, J., Deb, M. K. & Deshmukh, D. K. Microwave-assisted synthesis of silver nanoparticles using benzo-18-crown-6 as reducing and stabilizing agent. Appl. Nanosci. 4, 507–510 (2014).

    CAS 

    Google Scholar 

  • Wu, Z., Huang, X., Li, Y. C., Xiao, H. & Wang, X. Novel chitosan films with laponite immobilized Ag nanoparticles for active food packaging. Carbohydr. Polym. 199, 210–218 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tavakoli, H., Rastegar, H., Taherian, M., Samadi, M. & Rostami, H. The effect of nano-silver packaging in increasing the shelf life of nuts: an in vitro model. Ital. J. Food Saf. 6, 156–161 (2017).

    CAS 

    Google Scholar 

  • Kumar, S., Shukla, A., Baul, P. P., Mitra, A. & Halder, D. Biodegradable hybrid nanocomposites of chitosan/gelatin and silver nanoparticles for active food packaging applications. Food Packaging Shelf Life 16, 178–184 (2018).

    Google Scholar 

  • Shabbir, S., Kulyar, M. Fe. A., Bhutta, Z. A., Boruah, P. & Asif, M. Toxicological consequences of titanium dioxide nanoparticles (TiO2NPs) and their jeopardy to human population. BioNanoScience 11, 621–632 (2021).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Cao, C. et al. Poly(butylene adipate-co-terephthalate)/titanium dioxide/silver composite biofilms for food packaging application. LWT – Food Sci. Technol. 132, 109874 (2020).

    CAS 

    Google Scholar 

  • Ezati, P., Riahi, Z. & Rhim, J. W. CMC-based functional film incorporated with copper-doped TiO2 to prevent banana browning. Food Hydrocoll. 122, 107104 (2022).

    CAS 

    Google Scholar 

  • Zhu, Z., Cai, H., Sun, D. W. & Wang, H. W. Photocatalytic effects on the quality of pork packed in the package combined with TiO2 coated nonwoven fabrics. J. Food Process Eng. 42, 1–10 (2019).

    CAS 

    Google Scholar 

  • Pirsa, S. & Asadi, S. Innovative smart and biodegradable packaging for margarine based on a nano composite polylactic acid/lycopene film. Food Additives Contaminants Part A 38, 856–869 (2021).

    CAS 

    Google Scholar 

  • Souza, M. P. et al. Construction of a biocompatible and antioxidant multilayer coating by layer-by-layer assembly of κ-carrageenan and quercetin nanoparticles. Food Bioprocess Technol. 11, 1050–1060 (2018).

    CAS 

    Google Scholar 

  • Rezaeinia, H., Ghorani, B., Emadzadeh, B. & Mohebbi, M. Prolonged-release of menthol through a superhydrophilic multilayered structure of balangu (Lallemantia royleana)-gelatin nanofibers. Mater. Sci. Eng. C. 115, 111115 (2020).

    CAS 

    Google Scholar 

  • Mastromatteo, M., Barbuzzi, G., Conte, A. & Del Nobile, M. A. Controlled release of thymol from zein based film. Innovative Food Sci. Emerg. Technol. 10, 222–227 (2009).

    CAS 

    Google Scholar 

  • Cai, J., Xiao, J., Chen, X. & Liu, H. Essential oil loaded edible films prepared by continuous casting method: Effects of casting cycle and loading position on the release properties. Food Packaging Shelf Life 26, 100555 (2020).

    Google Scholar 

  • Conte, A., Lecce, L., Iannetti, M. & Del Nobile, M. A. Study on the influence of bio-based packaging system on sodium benzoate release kinetics. Foods 9, 1010 (2020).

  • Buonocore, G. G., Conte, A., Corbo, M. R., Sinigaglia, M. & Del Nobile, M. A. Mono- and multilayer active films containing lysozyme as antimicrobial agent. Innovative Food Sci. Emerg. Technol. 6, 459–464 (2005).

    CAS 

    Google Scholar 

  • Jipa, I. M., Stoica-Guzun, A. & Stroescu, M. Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT – Food Sci. Technol. 47, 400–406 (2012).

    CAS 

    Google Scholar 

  • Stroescu, M., Stoica-Guzun, A. & Jipa, I. M. Vanillin release from poly(vinyl alcohol)-bacterial cellulose mono and multilayer films. J. Food Eng. 114, 153–157 (2013).

    CAS 

    Google Scholar 

  • Sukhtezari, S., Almasi, H., Pirsa, S., Zandi, M. & Pirouzifard, M. K. Development of bacterial cellulose based slow-release active films by incorporation of Scrophularia striata Boiss. extract. Carbohydrate Polymers 156, 340–350 (2017).

  • Kowalczyk, D. et al. Release kinetics and antimicrobial properties of the potassium sorbate-loaded edible films made from pullulan, gelatin and their blends. Food Hydrocoll 101, 105539 (2020).

  • Vega-Lugo, A. C. & Lim, L. T. Controlled release of allyl isothiocyanate using soy protein and poly(lactic acid) electrospun fibers. Food Res. Int. 42, 933–940 (2009).

    CAS 

    Google Scholar 

  • Bayarri, M., Oulahal, N., Degraeve, P. & Gharsallaoui, A. Properties of lysozyme/low methoxyl (LM) pectin complexes for antimicrobial edible food packaging. J. Food Eng. 131, 18–25 (2014).

    CAS 

    Google Scholar 

  • Source link