Food and Agriculture Organization of the United Nations. The future of food and agriculture – Trends and challenges. 1–180 (2017). http://www.fao.org/3/i6583e/i6583e.pdf. Accessed 1st Apr 2021.
Conforti, P. (Food and A. O. of the U. N. Looking ahead in world food and agriculture: Perspectives to 2050. 1–560 (2011). http://www.fao.org/3/i2280e/i2280e.pdf. Accessed 1st Apr 2021.
Foreign Agricultural Service (United States Department of Agriculture). Citrus: World Markets and Trade. 1–13 (2021). https://apps.fas.usda.gov/psdonline/circulars/citrus.pdf. Accessed 1st Apr 2021.
Richard, D. et al. First report of copper-resistant Xanthomonas citri pv. citri pathotype a causing asiatic citrus canker in reunion, France. Plant Dis. 101, 503 (2017).
Wuana, R. A. & Okieimen, F. E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. 2011, 1–20 (2011).
Coletta-Filho, H. D. et al. Citrus variegated chlorosis: An overview of 30 years of research and disease management. Trop. Plant Pathol. 45, 175–191 (2020).
Martins, P. M. M., de Oliveira Andrade, M., Benedetti, C. E. & de Souza, A. A. Xanthomonas citri subsp. citri: Host interaction and control strategies. Trop. Plant Pathol. 45, 213–236 (2020).
Simpson, A. J. G. et al. The genome sequence of the plant pathogen Xylella fastidiosa. Nature 406, 151–157 (2000).
Google Scholar
Da Silva, A. C. R. et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 417, 459–463 (2002).
Google Scholar
Moreira, L. M. et al. Comparative genomics analyses of citrus-associated bacteria. Annu. Rev. Phytopathol. 42, 163–184 (2004).
Google Scholar
Burbank, L. P. & Stenger, D. C. The DinJ/RelE toxin-antitoxin system suppresses bacterial proliferation and virulence of Xylella fastidiosa in grapevine. Phytopathology 107, 388–394 (2017).
Google Scholar
Lee, M. W., Tan, C. C., Rogers, E. E. & Stenger, D. C. Toxin-antitoxin systems mqsR/ygiT and dinJ/relE of Xylella fastidiosa. Physiol. Mol. Plant Pathol. 87, 59–68 (2014).
Google Scholar
Martins, P. M. M., Machado, M. A., Silva, N. V., Takita, M. A. & De Souza, A. A. Type II toxin-antitoxin distribution and adaptive aspects on Xanthomonas genomes: Focus on Xanthomonas citri. Front. Microbiol. 7 (2016).
Merfa, M. V., Niza, B., Takita, M. A. & De Souza, A. A. The MqsRA toxin-antitoxin system from Xylella fastidiosa plays a key role in bacterial fitness, pathogenicity, and persister cell formation. Front. Microbiol. 7, 1–14 (2016).
Muranaka, L. S., Takita, M. A., Olivato, J. C., Kishi, L. T. & de Souza, A. A. Global expression profile of biofilm resistance to antimicrobial compounds in the plant-pathogenic bacterium Xylella fastidiosa reveals evidence of persister cells. J. Bacteriol. 194, 4561–4569 (2012).
Google Scholar
da Santiago, A. S. et al. The antitoxin protein of a toxin-antitoxin system from Xylella fastidiosa is secreted via outer membrane vesicles. Front. Microbiol. 7, 1–14 (2016).
Keren, I., Shah, D., Spoering, A., Kaldalu, N. & Lewis, K. Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J. Bacteriol. 186, 8172–8180 (2004).
Google Scholar
Kim, Y. & Wood, T. K. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem. Biophys. Res. Commun. 391, 209–213 (2010).
Google Scholar
Wang, X. & Wood, T. K. Toxin-antitoxin systems influence biofilm and persister cell formation and the general stress response. Appl. Environ. Microbiol. 77, 5577–5583 (2011).
Google Scholar
Yamaguchi, Y., Park, J. H. & Inouye, M. Toxin-antitoxin systems in bacteria and archaea. Annu. Rev. Genet. 45, 61–79 (2011).
Google Scholar
Edzierska, K. B. & Hayes, F. molecules emerging roles of toxin-antitoxin modules in bacterial pathogenesis. Molecules 21, 1–25 (2016).
Martins, P. M., Machado, M. A., Silva, N. V, Takita, M. A. & de Souza AA. Type II Toxin-Antitoxin Distribution and Adaptive
Aspects on Xanthomonas Genomes: Focus on Xanthomonas citri. Front Microbiol. 7, 652. https://doi.org/10.3389/fmicb.2016.00652 (2016).
Google Scholar
Unterholzner, S. J., Hailer, B., Poppenberger, B. & Rozhon, W. Plasmid characterisation of the stbD/E toxin—antitoxin system of pEP36, a plasmid of the plant pathogen Erwinia pyrifoliae. Plasmid 70, 216–225 (2013).
Google Scholar
Lee, M. W., Rogers, E. E. & Stenger, D. C. Xylella fastidiosa plasmid-encoded PemK toxin is an endoribonuclease. Phytopathology 102, 32–40 (2012).
Google Scholar
Chan, W. T., Balsa, D. & Espinosa, M. One cannot rule them all: Are bacterial toxins-antitoxins druggable?. FEMS Microbiol. Rev. 39, 522–540 (2015).
Google Scholar
Chan, W. T., Espinosa, M. & Yeo, C. C. Keeping the wolves at bay: Antitoxins of prokaryotic type II toxin-antitoxin systems. Front. Mol. Biosci. 3, 1–20 (2016).
Brown, B. L. et al. Three dimensional structure of the MqsR:MqsA complex: A novel TA pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5, 1–15 (2009).
Yamaguchi, Y., Park, J. H. & Inouye, M. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCU-specific mRNA interferase in Escherichia coli. J. Biol. Chem. 284, 28746–28753 (2009).
Google Scholar
Boscariol, R. L. et al. Attacin A gene from Tricloplusia ni reduces susceptibility to Xanthomonas axonopodis pv. citri in transgenic Citrus sinesis ‘Hamlin’. J. Am. Soc. Hortic. Sci. 131, 530–536 (2006).
Google Scholar
Schnell, J. et al. A comparative analysis of insertional effects in genetically engineered plants: Considerations for pre-market assessments. Transgenic Res. 24, 1–17 (2015).
Google Scholar
Caserta, R., Souza-Neto, R. R., Takita, M. A., Lindow, S. E. & De Souza, A. A. Ectopic expression of Xylella fastidiosa rpfF conferring production of diffusible signal factor in transgenic tobacco and citrus alters pathogen behavior and reduces disease severity. Mol. Plant Microbe Interact. 30, 866–875 (2017).
Google Scholar
Belasque, J. Jr. et al. Escalas diagramáticas para avaliação da severidade do cancro cítrico. Fitopatol. Bras. 30, 387–393 (2005).
Muranaka, L. S., Giorgiano, T. E., Takita, M. A., Forim, M. R. & Silva, L. F. C. N-Acetylcysteine in agriculture, a novel use for an old molecule: Focus on controlling the plant-pathogen Xylella fastidiosa. PLoS ONE 8, 1–14 (2013).
Caserta, R. et al. Expression of Xylella fastidiosa RpfF in citrus disrupts signaling in Xanthomonas citri subsp. citri and thereby its virulence. Mol. Plant Microbe Interact. 27, 1241–1252 (2014).
Google Scholar
Yang, L. et al. Transformation of sweet orange [Citrus sinensis (L.) Osbeck] with pthA-nls for acquiring resistance to citrus canker disease. Plant Mol. Biol. 75, 11–23 (2011).
Google Scholar
ISAAA. Global Status of Commercialized Biotech/GM Crops: 2018 (2018). https://www.isaaa.org/resources/publications/briefs/54/. Accessed 1st Apr 2021.
Lindow, S. et al. Production of Xylella fastidiosa diffusible signal factor in transgenic grape causes pathogen confusion and reduction in severity of pierce’s disease. Mol. Plant Microbe Interact. 27, 244–254 (2014).
Google Scholar
Schikora, A. et al. N-acyl-homoserine lactone confers resistance toward biotrophic and hemibiotrophic pathogens via altered activation of AtMPK6. Plant Physiol. 157, 1407–1418 (2011).
Google Scholar
Schenk, S. T. et al. N-acyl-homoserine lactone primes plants for cell wall reinforcement and induces resistance to bacterial pathogens via the salicylic acid/oxylipin pathway. Plant Cell 26, 2708–2723 (2014).
Google Scholar
Kasari, V., Kurg, K., Margus, T., Tenson, T. & Kaldalu, N. The Escherichia coli mqsR and ygiT genes encode a new toxin-antitoxin pair. J. Bacteriol. 192, 2908–2919 (2010).
Google Scholar
Kim, Y. et al. Escherichia coli toxin/antitoxin pair MqsR/MqsA regulate toxin CspD. Environ. Microbiol. 12, 1105–1121 (2010).
Google Scholar
Paget, M. S. & Helmann, J. D. The 70 family of sigma factors. Genome Biol. 4, 203.1-203.6 (2003).
Malamud, F. et al. The Xanthomonas axonopodis pv. citri flagellum is required for mature biofilm and canker development. Microbiology 157, 819–829 (2011).
Google Scholar
Bakar, F. A., Yeo, C. C. & Harikrishna, J. A. Expression of the streptococcus pneumoniae yoeB chromosomal toxin gene causes cell death in the model plant Arabidopsis thaliana. BMC Biotechnol. 15, 1–10 (2015).
Baldacci-Cresp, F. et al. Escherichia coli mazEF toxin-antitoxin system as a tool to target cell ablation in plants. J. Mol. Microbiol. Biotechnol. 26, 277–283 (2016).
Google Scholar
Abbasi, P. A., Khabbaz, S. E., Weselowski, B. & Zhang, L. Occurrence of copper-resistant strains and a shift in Xanthomonas spp. causing tomato bacterial spot in Ontario. Can. J. Microbiol. 61, 753–761 (2015).
Google Scholar
Cidre, I., Pulido, R. P., Burgos, M. J. G., Galvez, A. & Lucas, R. Copper and zinc tolerance in bacteria isolated from fresh produce. J. Food Prot. 80, 969–975 (2017).
Google Scholar
Colombi, E. et al. Evolution of copper resistance in the kiwifruit pathogen Pseudomonas syringae pv. actinidiae through acquisition of integrative conjugative elements and plasmids. Environ. Microbiol. 19, 819–832 (2017).
Google Scholar
Itako, A. T., Tolentino, J. B. Jr., Da Silva Jr, T. A. F., Soman, J. M. & Maringoni, A. C. Chemical products induce resistance to Xanthomonas perforans in tomato. Braz. J. Microbiol. 46, 701–706 (2015).
Google Scholar
Kovach, M. E. et al. Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166, 175–176 (1995).
Google Scholar
Zhao, S. & Fernald, R. D. Comprehensive algorithm for quantitative real-time polymerase chain reaction. J. Comput. Biol. 12, 1047–1064 (2005).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25, 402–408 (2001).
Google Scholar
Shepherd, C. T., Lauter, A. N. M. & Scott, M. P. Determination of transgene copy number by real-time quantitative PCR. Methods Mol. Biol. 526, 129–134 (2009).
Google Scholar
Omar, A. A., Dekkers, M. G. H., Graham, J. H. & Grosser, J. W. Estimation of transgene copy number in transformed citrus plants by quantitative multiplex real-time PCR. Biotechnol. Prog. 24, 1241–1248 (2008).
Google Scholar
Wu, Z. & Burns, J. K. Isolation and characterization of a cDNA encoding a lipid transfer protein expressed in ‘Valencia’ orange during abscission. J. Exp. Bot. 54, 1183–1191 (2003).
Google Scholar
De Oliveira, M. L. P. et al. Increased resistance against citrus canker mediated by a citrus mitogen-activated protein kinase. Mol. Plant Microbe Interact. 26, 1190–1199 (2013).
Google Scholar
Scott, M. P. Tissue-print immunodetection of transgene products in endosperm for high-throughput screening of seeds. Methods Mol. Biol. 526, 123–128 (2009).
Google Scholar
Rigano, L. A. et al. Biofilm formation, epiphytic fitness, and canker development in Xanthomonas axonopodis pv. citri. Mol. Plant Microbe Interact. 20, 1222–1230 (2007).
Google Scholar
Coletta-Filho, H. D. et al. Analysis of resistance to Xylella fastidiosa within a hybrid population of Pera sweet orange × Murcott tangor. Plant Pathol. 56, 661–668 (2007).
Minsavage, G. V., Thompson, C. M., Hopkins, D. L., Leite, R. M. V. B. & Stall, R. E. Development of a polymerase chain reaction protocol for detection of Xylella fastidiosa in plant tissue. Phytopathology 84, 456–461 (1994).
Google Scholar
Berger, R. D. The analysis of effects of control measures on the development of epidemics. In Experimental Techniques in Plant Disease Epidemiology 137–151 (Springer, Berlin, 1988). https://doi.org/10.1007/978-3-642-95534-1_10

