Preloader

Functional hydrogels for the treatment of myocardial infarction

  • Shi, H. P. et al. Microneedle-mediated gene delivery for the treatment of ischemic myocardial disease. Sci. Adv. 6, eaaz3621 (2020).

    CAS 

    Google Scholar 

  • Wu, Y. et al. Release of VEGF and BMP9 from injectable alginate based composite hydrogel for treatment of MI. Bioact. Mater. 6, 520–528 (2021).

    CAS 

    Google Scholar 

  • Lin, X. et al. A viscoelastic adhesive epicardial patch for treating MI. Nat. Biomed. Eng. 3, 632–643 (2019).

    CAS 

    Google Scholar 

  • Fiedler, J. & Thum, T. MicroRNAs in MI. Arterioscler Thromb. Vasc. Biol. 33, 201–205 (2013).

    CAS 

    Google Scholar 

  • Sepantafar, M. et al. Stem cells and injectable hydrogels: synergistic therapeutics in myocardial repair. Biotechnol. Adv. 34, 362–379 (2016).

    CAS 

    Google Scholar 

  • Pena, B. et al. Injectable hydrogels for cardiac tissue engineering. Macromol. Biosci. 18, 1800079 (2018).

    Google Scholar 

  • Heallen, T. R. & Martin, J. F. Heart repair via cardiomyocyte-secreted vesicles. Nat. Biomed. Eng. 2, 271–272 (2018).

    Google Scholar 

  • Hashimoto, H., Olson, E. N. & Bassel-Duby, R. Therapeutic approaches for cardiac regeneration and repair. Nat. Rev. Cardiol. 15, 585–600 (2018).

    Google Scholar 

  • Marban, E. A mechanistic roadmap for the clinical application of cardiac cell therapies. Nat. Biomed. Eng. 2, 353–361 (2018).

    Google Scholar 

  • Zhang, Y. et al. A collagen hydrogel loaded with HDAC7-derived peptide promotes the regeneration of infarcted myocardium with functional improvement in a rodent mode. Acta Biomater. 86, 223–234 (2019).

    Google Scholar 

  • Li, H. K. et al. Folic acid-derived hydrogel enhances the survival and promotes therapeutic efficacy of iPS cells for acute MI. ACS Appl. Mater. Interfaces 10, 24459–24468 (2018).

    CAS 

    Google Scholar 

  • Wu, T. L. et al. Coadministration of an adhesive conductive hydrogel patch and an injectable hydrogel to treat MI. ACS Appl. Mater. Interfaces 12, 2039–2048 (2020).

    CAS 

    Google Scholar 

  • Jackman, C. P. et al. Engineered cardiac tissue patch maintains structural and electrical properties after epicardial implantation. Biomaterials 159, 48–58 (2018).

    CAS 

    Google Scholar 

  • Pedron, S. et al. Stimuli responsive delivery vehicles for cardiac microtissue transplantation. Adv. Funct. Mater. 21, 1624–1630 (2011).

    CAS 

    Google Scholar 

  • Peña, B. et al. Injectable hydrogels for cardiac tissue engineering. Macromol. Biosci. 18, 1800079 (2018).

    Google Scholar 

  • Camci-Unal, G., Annabi, N., Dokmeci, M. R., Liao, R. & Khademhosseini, A. Hydrogels for cardiac tissue engineering. NPG Asia. Mater. 6, e99 (2014).

    CAS 

    Google Scholar 

  • Nguyen, M. M. et al. Enzyme-responsive nanoparticles for targeted accumulation and prolonged retention in heart tissue after MI. Adv. Mater. 27, 5547–5552 (2015).

    CAS 

    Google Scholar 

  • Kampourides, N. et al. Usefulness of matrix metalloproteinase-9 plasma levels to identify patients with preserved left ventricular systolic function after acute MI who could benefit from eplerenone. Am. J. Cardiol. 110, 1085–1091 (2012).

    CAS 

    Google Scholar 

  • Zhang, Y. et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv. Mater. 33, 2006570 (2021).

    CAS 

    Google Scholar 

  • Yao, Y. J. et al. ROS-responsive polyurethane fibrous patches loaded with methylprednisolone (MP) for restoring structures and functions of infarcted myocardium in vivo. Biomaterials 232, 119726 (2020).

    CAS 

    Google Scholar 

  • McMahan, S. et al. Current advances in biodegradable synthetic polymer based cardiac patches. J. Biomed. Mater. Res. 108, 972–983 (2020).

    CAS 

    Google Scholar 

  • Li, Y. et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for MI therapy in pigs. Sci. Adv. 7, eabd6740 (2021).

    CAS 

    Google Scholar 

  • Purcell, B. P. et al. Delivery of a matrix metalloproteinase-responsive hydrogel releasing TIMP-3 after MI: effects on left ventricular remodeling. Am. J. Physiol. Heart Circ. Physiol. 315, H814–H825 (2018).

    CAS 

    Google Scholar 

  • Creemers, E. E. J. M., Cleutjens, J. P. M., Smits, J. F. M. & Daemen, M. J. A. P. Matrix metalloproteinase inhibition after MI-A new approach to prevent heart failure? Circ. Res. 89, 201–210 (2001).

    CAS 

    Google Scholar 

  • Wang, K. F. et al. Usefulness of plasma matrix metalloproteinase-9 level in predicting future coronary revascularization in patients after acute MI. Coron. Artery Dis. 24, 23–28 (2013).

    Google Scholar 

  • Sun, Y. Myocardial repair/remodelling following infarction: roles of local factors. Cardiovasc. Res. 81, 482–490 (2009).

    CAS 

    Google Scholar 

  • Spaulding, K. A. et al. Myocardial injection of a thermoresponsive hydrogel with reactive oxygen species scavenger properties improves border zone contractility. J. Biomed. Mater. Res. A 108, 1736–1746 (2020).

    CAS 

    Google Scholar 

  • Bloise, N. et al. Engineering immunomodulatory biomaterials for regenerating the infarcted myocardium. Front. Bioeng. Biotech. 8, 292 (2020).

    Google Scholar 

  • Zhao, G. X. et al. Anisotropic conductive reduced graphene oxide/silk matrices promote post-infarction myocardial function by restoring electrical integrity. Acta Biomater. https://doi.org/10.1016/j.actbio.2021.03.073 (2021).

  • Song, C. et al. An injectable conductive three-dimensional elastic network by tangled surgical-suture spring for heart repair. ACS Nano 13, 14122–14137 (2019).

    CAS 

    Google Scholar 

  • Wang, L. L. et al. Sustained miRNA delivery from an injectable hydrogel promotes cardiomyocyte proliferation and functional regeneration after ischaemic injury. Nat. Biomed. Eng. 1, 983–992 (2017).

    CAS 

    Google Scholar 

  • Wall, S. T., Walker, J. C., Healy, K. E., Ratcliffe, M. B. & Guccione, J. M. Theoretical impact of the injection of material into the myocardium. Circulation 114, 2627–2635 (2006).

    Google Scholar 

  • Zhu, Y., Matsumura, Y. & Wagner, W. R. Ventricular wall biomaterial injection therapy after MI: advances in material design, mechanistic insight and early clinical experiences. Biomaterials 129, 37–53 (2017).

    CAS 

    Google Scholar 

  • Park, S. J. et al. Dual stem cell therapy synergistically improves cardiac function and vascular regeneration following MI. Nat. Commun. 10, 3123 (2019).

    Google Scholar 

  • Huang, K. et al. An off-the-shelf artificial cardiac patch improves cardiac repair after MI in rats and pigs. Sci. Transl. Med. 12, eaat9683 (2020).

    Google Scholar 

  • Gustafson, J. A. et al. Synthesis and characterization of a matrix-metalloproteinase responsive silk-elastinlike protein polymer. Biomacromolecules 14, 618–625 (2013).

    CAS 

    Google Scholar 

  • Fonseca, K. B. et al. Enzymatic, physicochemical and biological properties of MMP-sensitive alginate hydrogels. Soft Matter 9, 3283–3292 (2013).

    CAS 

    Google Scholar 

  • Martin, J. R., Patil, P., Yu, F., Gupta, M. K. & Duvall, C. L. Enhanced stem cell retention and antioxidative protection with injectable, ROS-degradable PEG hydrogels. Biomaterials 263, 120377 (2021).

    Google Scholar 

  • Cheng, H. et al. Sprayable hydrogel dressing accelerates wound healing with combined reactive oxygen species-scavenging and antibacterial abilities. Acta Biomater. 124, 219–232 (2021).

    CAS 

    Google Scholar 

  • Zhou, J. et al. Injectable OPF/graphene oxide hydrogels provide mechanical support and enhance cell electrical signaling after implantation into myocardial infarct. Theranostics 8, 3317–3330 (2018).

    CAS 

    Google Scholar 

  • Kim, D. H. et al. Guided three-dimensional growth of functional cardiomyocytes on polyethylene glycol nanostructures. Langmuir 22, 5419–5426 (2006).

    CAS 

    Google Scholar 

  • Madden, L. R. et al. Proangiogenic scaffolds as functional templates for cardiac tissue engineering. Proc. Natl Acad. Sci. USA 107, 15211–15216 (2010).

    CAS 

    Google Scholar 

  • Soler-Botija, C., Galvez-Monton, C., Prat-Vidal, C., Roura, S. & Bayes-Genis, A. Myocardial bioprosthesis: mimicking nature. Drug. Future 38, 475–484 (2013).

    Google Scholar 

  • Liu, J. et al. Direct 3D bioprinting of cardiac micro-tissues mimicking native myocardium. Biomaterials 256, 120204 (2020).

    CAS 

    Google Scholar 

  • Lee, A. et al. 3D bioprinting of collagen to rebuild components of the human heart. Science 365, 482–487 (2019).

    CAS 

    Google Scholar 

  • Maral, S. et al. Matrix metalloproteinases 2 and 9 polymorphism in patients with myeloproliferative diseases. Medicine 94, e732 (2015).

    CAS 

    Google Scholar 

  • West, J. B., Watson, R. R. & Fu, Z. X. The honeycomb-like structure of the bird lung allows a uniquely thin blood-gas barrier. Resp. Physiol. Neurobi. 152, 115–118 (2006).

    Google Scholar 

  • Noujaim, D., van Golen, C. M., van Golen, K. L., Grauman, A. & Feldman, E. L. N-Myc and Bcl-2 coexpression induces MMP-2 secretion and activation in human neuroblastoma cells. Oncogene 21, 4549–4557 (2002).

    CAS 

    Google Scholar 

  • Wada, C. K. et al. Phenoxyphenyl sulfone N-formylhydroxylamines (retrohydroxamates) as potent, selective, orally bioavailable matrix metalloproteinase inhibitors. J. Med. Chem. 45, 219–232 (2002).

    CAS 

    Google Scholar 

  • Michaelides, M. R. & Curtin, M. L. Recent advances in matrix metalloproteinase inhibitor research. Curr. Pharm. Des. 5, 787–819 (1999).

    CAS 

    Google Scholar 

  • Eckhouse, S. R. et al. Local hydrogel release of recombinant TIMP-3 attenuates adverse left ventricular remodeling after experimental MI. Sci. Transl. Med. 6, 223ra21 (2014).

    Google Scholar 

  • Zavadzkas, J. A. et al. Targeted overexpression of tissue inhibitor of matrix metalloproteinase-4 modifies post-MI remodeling in mice. Circ. Res. 114, 1435–1445 (2014).

    CAS 

    Google Scholar 

  • Carlini, A. S. et al. Enzyme-responsive progelator cyclic peptides for minimally invasive delivery to the heart post-myocardial infarction. Nat. Commun. 10, 1735 (2019).

    Google Scholar 

  • Fan, Z. B. et al. Sustained release of a peptide-based matrix metalloproteinase‑2 inhibitor to attenuate adverse cardiac remodeling and improve cardiac function following MI. Biomacromolecules 18, 2820–2829 (2017).

    CAS 

    Google Scholar 

  • Purcell, B. P. et al. Injectable and bioresponsive hydrogels for on-demand matrix metalloproteinase inhibition. Nat. Mater. 13, 653–661 (2014).

    CAS 

    Google Scholar 

  • Fan, C. X. et al. Myocardial-infarction-responsive smart hydrogels targeting matrix metalloproteinase for on-demand growth factor delivery. Adv. Mater. 31, 1902900 (2019).

    CAS 

    Google Scholar 

  • Xu, Q., He, C., Xiao, C. & Chen, X. Reactive oxygen species (Ros) responsive polymers for biomedical applications. Macromol. Biosci. 16, 635–646 (2016).

    CAS 

    Google Scholar 

  • Huo, M., Yuan, J., Tao, L. & Wei, Y. Redox-responsive polymers for drug delivery: from molecular design to applications. Polym. Chem. 5, 1519–1528 (2014).

    CAS 

    Google Scholar 

  • Wang, W. et al. Rebuilding postinfarcted cardiac functions by injecting TIIA@ PDA nanoparticle-cross-linked ROS-sensitive hydrogels. ACS Appl. Mater. Interfaces 11, 2880–2890 (2018).

    Google Scholar 

  • Han, X. X. et al. “Ferrero-like” nanoparticles knotted injectable hydrogels to initially scavenge ROS and lastingly promote vascularization in infarcted hearts. Sci. China Tech. Sci. 63, 2435–2448 (2020).

    CAS 

    Google Scholar 

  • Ding, J. et al. A reactive oxygen species scavenging and O2 generating injectable hydrogel for MI treatment in vivo. Small 16, 2005038 (2020).

    CAS 

    Google Scholar 

  • Zhu, Y. et al. Reactive oxygen species scavenging with a biodegradable, thermally responsive hydrogel compatible with soft tissue injection. Biomaterials 177, 98e112 (2018).

    Google Scholar 

  • Li, J. J. et al. A chitosaneglutathione based injectable hydrogel for suppression of oxidative stress damage in cardiomyocytes. Biomaterials 34, 9071e9081 (2013).

    Google Scholar 

  • Liu, Z. Q. et al. The influence of chitosan hydrogel on stem cell engraftment, survival and homing in the ischemic myocardial microenvironment. Biomaterials 33, 3093e3106 (2012).

    Google Scholar 

  • Hao, T. et al. Injectable fullerenol/alginate hydrogel for suppression of oxidative stress damage in brown adipose-derived stem cells and cardiac repair. ACS Nano 11, 5474–5488 (2017).

    CAS 

    Google Scholar 

  • Swirski, F. K. & Nahrendorf, M. Cardioimmunology: the immune system in cardiac homeostasis and disease. Nat. Rev. Immunol. 18, 733–744 (2018).

    CAS 

    Google Scholar 

  • Frangogiannis, N. G. et al. Resident cardiac mast cells degranulate and release preformed TNF-alpha, initiating the cytokine cascade in experimental canine myocardial ischemia/reperfusion. Circulation 98, 699–710 (1998).

    CAS 

    Google Scholar 

  • Anzai, A. et al. The infarcted myocardium solicits GM-CSF for the detrimental oversupply of inflammatory leukocytes. J. Exp. Med. 214, 3293–3310 (2017).

    CAS 

    Google Scholar 

  • Nikolaos, G. F. The immune system and the remodeling infarcted heart: cell biological insights and therapeutic opportunities. J. Cardiovasc. Pharmacol. 63, 83–84 (2014).

    Google Scholar 

  • Kobara, M. et al. Antibody against interleukin-6 receptor attenuates left ventricular remodelling after myocardial infarction in mice. Cardiovasc. Res. 87, 424–430 (2010).

    CAS 

    Google Scholar 

  • Marta, M. T. et al. Local administration of porcine immunomodulatory, chemotactic and angiogenic extracellular vesicles using engineered cardiac scaffolds for myocardial infarction. Bioact. Mater. 6, 3314–3327 (2021).

    Google Scholar 

  • Liu, Y. et al. Chitosan hydrogel enhances the therapeutic efficacy of bone marrow-derived mesenchymal stem cells for myocardial infarction by alleviating vascular endothelial cell pyroptosis. J. Cardiovasc. Pharmacol. 75, 75–83 (2020).

    CAS 

    Google Scholar 

  • Shin, E. Y. et al. Adenosine production by biomaterial-supported mesenchymal stromal cells reduces the innate inflammatory response in myocardial ischemia/reperfusion injury. J. Am. Heart Assoc. 7, e006949 (2018).

    Google Scholar 

  • Duan, Y. Y. et al. Unsaturated polyurethane films grafted with enantiomeric polylysine promotes macrophage polarization to a M2 phenotype through PI3K/Akt1/mTOR axis. Biomaterials 246, 120012 (2020).

    CAS 

    Google Scholar 

  • Liu, G. et al. Enhancement of cardiac function with spleen-specific hydrogel via improving the immune microenvironment after myocardial infarction. J. Biomater. Tiss. Eng. 7, 458–468 (2017).

    Google Scholar 

  • Lv, K. Q. et al. Incorporation of small extracellular vesicles in sodium alginate hydrogel as a novel therapeutic strategy for myocardial infarction. Theranostics 9, 7403–7416 (2019).

    CAS 

    Google Scholar 

  • Li, Y. et al. Injectable hydrogel with MSNs/microRNA-21-5p delivery enables both immunomodification and enhanced angiogenesis for myocardial infarction therapy in pigs. Sci. Adv. 7, eabd6740 (2021).

    CAS 

    Google Scholar 

  • Zhang, X. P. et al. Artificial apoptotic cells/VEGF-loaded injectable hydrogel united with immunomodification and revascularization functions to reduce cardiac remodeling after myocardial infarction. Nano Today 39, 101227 (2021).

    CAS 

    Google Scholar 

  • Hofmann, U. et al. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation 125, 1652–U146 (2012).

    CAS 

    Google Scholar 

  • Weirather, J. et al. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ. Res. 115, 55–67 (2014).

    CAS 

    Google Scholar 

  • Zacchigna, S. et al. Paracrine effect of regulatory T cells promotes cardiomyocyte proliferation during pregnancy and after myocardial infarction. Nat. Commun. 9, 2432 (2018).

    Google Scholar 

  • Bao, R. et al. A π-π conjugation-containing soft and conductive injectable polymer hydrogel highly efficiently rebuilds cardiac function after MI. Biomaterials 122, 63–71 (2017).

    CAS 

    Google Scholar 

  • Wang, L. L. et al. Mussel-inspired conductive cryogel as cardiac tissue patch to repair MI by migration of conductive nanoparticles. Adv. Funct. Mater. 26, 4293–4305 (2016).

    CAS 

    Google Scholar 

  • Hsiao, C. W. et al. Electrical coupling of isolated cardiomyocyte clusters grown on aligned conductive nanofibrous meshes for their synchronized beating. Biomaterials 34, 1063–1072 (2013).

    CAS 

    Google Scholar 

  • Song, X. P. et al. A tunable self-healing ionic hydrogel with microscopic homogeneous conductivity as a cardiac patch for MI repair. Biomaterials 273, 120811 (2021).

    CAS 

    Google Scholar 

  • Qazi, T. H., Rai, R. & Boccaccini, A. R. Tissue engineering of electrically responsive tissues using polyaniline based polymers: a review. Biomaterials 35, 9068–9086 (2014).

    CAS 

    Google Scholar 

  • Kai, D., Prabhakaran, M. P., Jin, G. & Ramakrishna, S. Polypyrrole-contained electrospun conductive nanofibrous membranes for cardiac tissue engineering. J. Biomed. Mater. Res. A 99, 376–385 (2011).

    Google Scholar 

  • Navaei, A. et al. Gold nanorod-incorporated gelatin-based conductive hydrogels for engineering cardiac tissue constructs. Acta Biomater. 41, 133–146 (2016).

    CAS 

    Google Scholar 

  • Pok, S. et al. Biocompatible carbon nanotube-chitosan scaffold matching the electrical conductivity of the heart. ACS Nano 8, 9822–9832 (2014).

    CAS 

    Google Scholar 

  • Mihic, A. et al. A conductive polymer hydrogel supports cell electrical signaling and improves cardiac function after implantation into myocardial infarct. Circulation 132, 772–784 (2015).

    CAS 

    Google Scholar 

  • Wang, W. et al. An injectable conductive hydrogel encapsulating plasmid DNA-eNOs and ADSCs for treating MI. Biomaterials 160, 69–81 (2018).

    CAS 

    Google Scholar 

  • Liang, S. et al. Paintable and rapidly bondable conductive hydrogels as therapeutic cardiac patches. Adv. Mater. 30, 1704235 (2018).

    Google Scholar 

  • He, S. et al. The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure. Biomaterials 258, 120285 (2020).

    CAS 

    Google Scholar 

  • Motealleh, A. & Kehr, N. S. Nanocomposite hydrogels and their applications in tissue engineering. Adv. Healthc. Mater. 6, 1600938 (2017).

    Google Scholar 

  • Lei, Z. Y. & Wu, P. Y. A highly transparent and ultra-stretchable conductor with stable conductivity during large deformation. Nat. Commun. 10, 3429 (2019).

    Google Scholar 

  • Noshadi, I. et al. Engineering biodegradable and biocompatible bio-ionic liquid conjugated hydrogels with tunable conductivity and mechanical properties. Sci. Rep. 7, 4345 (2017).

    Google Scholar 

  • Liu, Y. et al. One zwitterionic injectable hydrogel with ion conductivity enables efficient restoration of cardiac function after MI. Chem. Eng. J. 418, 129352 (2021).

    CAS 

    Google Scholar 

  • Zhao, Q. & Li, Z. J. Angiogenesis. BioMed. Res. Int. 2015, 135861 (2015).

    Google Scholar 

  • Awada, H. K., Johnson, N. R. & Wang, Y. D. Sequential delivery of angiogenic growth factors improves revascularization and heart function after MI. J. Control. Release 207, 7–17 (2015).

    CAS 

    Google Scholar 

  • Yuan, Z. Z. et al. Injectable citrate-based hydrogel as an angiogenic biomaterial improves cardiac repair after MI. ACS Appl. Mater. Interfaces 11, 38429–38439 (2019).

    CAS 

    Google Scholar 

  • Massion, P. B., Feron, O., Dessy, C. & Balligand, J. L. Nitric oxide and cardiac function ten years after, and continuing. Circ. Res. 93, 388–398 (2003).

    CAS 

    Google Scholar 

  • Lundberg, J. O., Weitzberg, E. & Gladwin, M. T. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat. Rev. Drug Discov. 7, 156–167 (2008).

    CAS 

    Google Scholar 

  • Qin, Q. et al. Exogenous NO triggers preconditioning via a cGMP-and mitoKATP-dependent mechanism. Am. J. Physiol.-Heart C. 287, H712–H718 (2004).

    CAS 

    Google Scholar 

  • Yao, X. P. et al. Nitric oxide releasing hydrogel enhances the therapeutic efficacy of mesenchymal stem cells for MI. Biomaterials 60, 130e140 (2015).

    Google Scholar 

  • Chen, G. Q. et al. A Mixed Component supramolecular hydrogel to improve mice cardiac function and alleviate ventricular remodeling after acute MI. Adv. Funct. Mater. 27, 1701798 (2017).

    Google Scholar 

  • Vong, L. B. et al. Novel angiogenesis therapeutics by redox injectable hydrogel-Regulation of local nitric oxide generation for effective cardiovascular therapy. Biomaterials 167, 143e152 (2018).

    Google Scholar 

  • Rufaihah, A. J. et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials 34, 8195–8202 (2013).

    CAS 

    Google Scholar 

  • Munarin, F., Kant, R. J., Rupert, C. E., Khoo, A. & Coulombe, K. L. K. Engineered human myocardium with local release of angiogenic proteins improves vascularization and cardiac function in injured rat hearts. Biomaterials 251, 120033 (2020).

    CAS 

    Google Scholar 

  • Lee, S. et al. Human-recombinant-elastin-based bioinks for 3D bioprinting of vascularized soft tissues. Adv. Mater. 32, 2003915 (2020).

    CAS 

    Google Scholar 

  • Noor, N. et al. 3D printing of personalized thick and perfusable cardiac patches and hearts. Adv. Sci. 6, 1900344 (2019).

    Google Scholar 

  • Motterlini, R. & Otterbein, L. E. The therapeutic potential of carbon monoxide. Nat. Rev. Drug Discov. 9, 728–U24 (2010).

    CAS 

    Google Scholar 

  • Wang, W. L., Ge, T. Y., Chen, X., Mao, Y. C. & Zhu, Y. Z. Advances in the protective mechanism of NO, H2S, and H2 in myocardial ischemic injury. Front. Cardiovasc. Med. 7, 588206 (2020).

    CAS 

    Google Scholar 

  • Kim, I. et al. Supramolecular carbon monoxide-releasing peptide hydrogel patch. Adv. Funct. Mater. 28, 1803051 (2018).

    Google Scholar 

  • Liang, W. et al. Conductive hydrogen sulfide-releasing hydrogel encapsulating ADSCs for myocardial infarction treatment. ACS Appl. Mater. Interfaces 11, 14619–14629 (2019).

    CAS 

    Google Scholar 

  • Shiekh, P. A., Singh, A. & Kumar, A. Oxygen releasing antioxidant cryogel scaffolds with sustained oxygen delivery for tissue engineering applications. ACS Appl. Mater. Interfaces 10, 18458–18469 (2018).

    CAS 

    Google Scholar 

  • Source link