Preloader

Bacterial cellulose production, functionalization, and development of hybrid materials using synthetic biology

  • Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 2005;44:3358–93. https://doi.org/10.1002/anie.200460587.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial cellulose fermentative production and applications. Food Technol Biotechnol 2009;47:107–24.

    CAS 

    Google Scholar 

  • Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl. 2011;50:5438–66. https://doi.org/10.1002/anie.201001273.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Iguchi M, Yamanaka S, Budhiono A. Review bacterial cellulose- a masterpiece of nature’s art. J Mater Sci. 2000;35:261–70.

    CAS 
    Article 

    Google Scholar 

  • Lee KY, Buldum G, Mantalaris A, Bismarck A. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci. 2014;14:10–32. https://doi.org/10.1002/mabi.201300298.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Festucci-Buselli RA, Otoni WC, Joshi CP. Structure, organization, and functions of cellulose synthase complexes in higher plants. Brazillian J Plant Physiol. 2007;19:1–13.

  • Esa F, Tasirin SM, Rahman NA. Overview of bacterial cellulose production and application. Agric Agric Sci Proced. 2014;2:113–9. https://doi.org/10.1016/j.aaspro.2014.11.017.

    Article 

    Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr. Microbial cellulose–the natural power to heal wounds. Biomaterials. 2006;27:145–51. https://doi.org/10.1016/j.biomaterials.2005.07.035.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shah J, Brown RM Jr. Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol. 2005;66:352–5. https://doi.org/10.1007/s00253-004-1756-6.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Keshk SMAS. Bacterial cellulose production and its industrial applications. J Bioprocessing Biotechniques. 2014;04. https://doi.org/10.4172/2155-9821.1000150.

  • Shezad O, Khan S, Khan T, Park JK. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym. 2010;82:173–80. https://doi.org/10.1016/j.carbpol.2010.04.052.

    CAS 
    Article 

    Google Scholar 

  • Microbial products: technologies, applications and global markets. https://www.bccresearch.com/market-research/biotechnology/microbial-products-technologies-applications-and-global-markets-report.html.

  • Klemm D, Emily DC, Fischer D, Gama M, Kedzior AA, Kralisch D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today. 2018;21:720–48. https://doi.org/10.1016/j.mattod.2018.02.001.

    CAS 
    Article 

    Google Scholar 

  • Gilbert C, Tang TC, Ott W, Dorr BA, Shaw WM, Sun LG, et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat Mater. 2021;20:691–700. https://doi.org/10.1038/s41563-020-00857-5.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Tang TC, An B, Huang Y, Vasikaran S, Wang Y, Jiang X, et al. Materials design by synthetic biology. Nat Rev Mater. 2021;6:332–50. https://doi.org/10.1038/s41578-020-00265-w.

    CAS 
    Article 

    Google Scholar 

  • Zakeri B. Synthetic biology: a new tool for the trade. Chembiochem. 2015;16:2277–82. https://doi.org/10.1002/cbic.201500372.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Florea M, Hagemann H, Santosa G, Abbott J, Micklem NC, Spencer-Milnes X, et al. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc Natl Acad Sci USA. 2016;113:E3431–40. https://doi.org/10.1073/pnas.1522985113.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Tran P, Prindle A. Synthetic biology in biofilms: tools, challenges, and opportunities. Biotechnol Prog. 2021:e3123. https://doi.org/10.1002/btpr.3123.

  • Hu W, Chen S, Yang J, Li Z, Wang H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym. 2014;101:1043–60. https://doi.org/10.1016/j.carbpol.2013.09.102.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–94. https://doi.org/10.1039/c0cs00108b.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Jacek P, Ryngajllo M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol. 2019;103:5339–53. https://doi.org/10.1007/s00253-019-09846-4.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Florea M, Reeve B, Abbott J, Freemont PS, Ellis T. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582. Sci Rep. 2016;6:23635. https://doi.org/10.1038/srep23635.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cannon RE, Anderson SM. Biogenesis of bacterial cellulose. Crit Rev Microbiol. 1991;17:435–47. https://doi.org/10.3109/10408419109115207.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yamanaka S, Sugiyama J. Structural modification of bacterial. Cellul Cellul. 2000;7:213–25. https://doi.org/10.1023/A:1009208022957.

    CAS 
    Article 

    Google Scholar 

  • Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 2010;8:578–92. https://doi.org/10.1038/nrmicro2354.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Basu A, Vadanan SV, Lim S. A novel platform for evaluating the environmental impacts on bacterial cellulose production. Sci Rep. 2018;8:5780. https://doi.org/10.1038/s41598-018-23701-y.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schramm M, Hestrin S. Factors affecting production of cellulose at the air/ liquid interface of a culture of acetobacter xylinum. Microbiology. 1954;11:123–9. https://doi.org/10.1099/00221287-11-1-123.

    CAS 
    Article 

    Google Scholar 

  • Hornung M, Ludwig M, Gerrard AM, Schmauder HP. Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1). Eng Life Sci. 2006;6:537–45. https://doi.org/10.1002/elsc.200620162.

    CAS 
    Article 

    Google Scholar 

  • Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng. 1999;88:183–8. https://doi.org/10.1016/S1389-1723(99)80199-6.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F. Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotechnol Biochem. 2014;59:1498–502. https://doi.org/10.1271/bbb.59.1498.

    Article 

    Google Scholar 

  • Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci. 1989;24:3141–5. https://doi.org/10.1007/BF01139032.

    CAS 
    Article 

    Google Scholar 

  • Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol. 2007;34:483–9. https://doi.org/10.1007/s10295-007-0218-4.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol. 2003;86:215–9. https://doi.org/10.1016/S0960-8524(02)00176-1.

    Article 
    PubMed 

    Google Scholar 

  • Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol. 2009;107:576–83. https://doi.org/10.1111/j.1365-2672.2009.04226.x.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol. 2008;57:449–53. https://doi.org/10.1007/s00284-008-9228-3.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ishihara M, Matsunaga M, Hayashi N, Tišler V. Utilization of d-xylose as carbon source for production of bacterial cellulose. Enzym Microb Technol. 2002;31:986–91. https://doi.org/10.1016/S0141-0229(02)00215-6.

    CAS 
    Article 

    Google Scholar 

  • Pourramezan GZ, Roayaei AM, Qezelbash QR. Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnology. 2009;8:150–4.

    CAS 
    Article 

    Google Scholar 

  • Coban EP, Biyik H. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr J Biotechnol. 2011;10:46. https://doi.org/10.5897/AJB10.1693.

    Article 

    Google Scholar 

  • Hirai A, Tsuji M, Horii F. Culture conditions producing structure entities composed of Cellulose I and II in bacterial cellulose. Cellulose. 1997;4:239–45. https://doi.org/10.1023/a:1018439907396.

    CAS 
    Article 

    Google Scholar 

  • Zeng X, Liu J, Chen J, Wang Q, Li Z, Wang H. Screening of the common culture conditions affecting crystallinity of bacterial cellulose. J Ind Microbiol Biotechnol. 2011;38:1993–9. https://doi.org/10.1007/s10295-011-0989-5.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hutchens SA, Leon RV, O’Neill HM, Evans BR. Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production. Lett Appl Microbiol. 2007;44:175–80. https://doi.org/10.1111/j.1472-765X.2006.02055.x.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Aloni Y, Delmer DP, Benziman M. Achievement of high rates of in vitro synthesis of 1,4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc Natl Acad Sci USA. 1982;79:6448–52. https://doi.org/10.1073/pnas.79.21.6448.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in Bacteria. Microbiol Rev. 1991;55:35–58.

    CAS 
    Article 

    Google Scholar 

  • Basu A, Vadanan SV, Lim S. Rational design of a scalable bioprocess platform for bacterial cellulose production. Carbohydr Polym. 2019;207:684–93. https://doi.org/10.1016/j.carbpol.2018.10.085.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Xie H, Du H, Yang X, Si C. Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci. 2018;2018:1–25. https://doi.org/10.1155/2018/7923068.

    CAS 
    Article 

    Google Scholar 

  • Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. J Mol Liq. 2010;156:76–81. https://doi.org/10.1016/j.molliq.2010.04.016.

    CAS 
    Article 

    Google Scholar 

  • Xiong B, Zhao P, Hu K, Zhang L, Cheng G. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose. 2014;21:1183–92. https://doi.org/10.1007/s10570-014-0221-7.

    CAS 
    Article 

    Google Scholar 

  • Shanshan G, Jianqing W, Zhengwei J. Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym. 2012;87:1020–5. https://doi.org/10.1016/j.carbpol.2011.06.040.

    CAS 
    Article 

    Google Scholar 

  • Jin H, Zha C, Gu L. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res. 2007;342:851–8. https://doi.org/10.1016/j.carres.2006.12.023.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Pham TTH, Vadanan SV, Lim S. Enhanced rheological properties and conductivity of bacterial cellulose hydrogels and aerogels through complexation with metal ions and PEDOT/PSS. Cellulose. 2020;27:8075–86. https://doi.org/10.1007/s10570-020-03284-6.

    CAS 
    Article 

    Google Scholar 

  • Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 2007;8:3276–8. https://doi.org/10.1021/bm700624p.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Shelton, WA: ITT Rayonier Inc.; 1983.

  • Wang S, Cheng Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci. 2009;113:1270–5. https://doi.org/10.1002/app.30072.

    CAS 
    Article 

    Google Scholar 

  • Yates MR, Barlow CY. Life cycle assessments of biodegradable, commercial biopolymers—a critical review. 2013;78:54–66.

  • Figueiredo ARP, Vilela C, Neto CP, Silvestre AJD, Freire CSR. Bacterial cellulose-based nanocomposites—roadmap for innovative materials. Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley, USA: Scrivener Publishing. 2014:17–62. https://doi.org/10.1002/9781118872246.ch2.

  • Shah N, Ul-Islam M, Khattak WA, Park JK. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym. 2013;98:1585–98. https://doi.org/10.1016/j.carbpol.2013.08.018.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yan Z, Chen S, Wang H, Wang B, Jiang J. Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym. 2008;74:659–65. https://doi.org/10.1016/j.carbpol.2008.04.028.

    CAS 
    Article 

    Google Scholar 

  • Zhu W, Li W, He Y, Duan T. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl Surf Sci. 2015;338:22–6. https://doi.org/10.1016/j.apsusc.2015.02.030.

    CAS 
    Article 

    Google Scholar 

  • Müller D, Cercená R, Gutiérrez Aguayo AJ, Porto LM, Rambo CR, Barra GMO. Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. J Mater Sci Mater Electron. 2016;27:8062–7. https://doi.org/10.1007/s10854-016-4804-y.

    CAS 
    Article 

    Google Scholar 

  • Müller D, Mandelli JS, Marins AJ, Soares BG, Porto LM, Rambo CR, et al. Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose. 2012;19:1645–54. https://doi.org/10.1007/s10570-012-9754-9.

    CAS 
    Article 

    Google Scholar 

  • Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met. 2011;161:106–11. https://doi.org/10.1016/j.synthmet.2010.11.005.

    CAS 
    Article 

    Google Scholar 

  • Ruka DR, Simon GP, Dean KM. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym. 2013;92:1717–23. https://doi.org/10.1016/j.carbpol.2012.11.007.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Saibuatong O-a, Phisalaphong M. Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr Polym. 2010;79:455–60. https://doi.org/10.1016/j.carbpol.2009.08.039.

    CAS 
    Article 

    Google Scholar 

  • Cheng K-C, Catchmark JM, Demirci A. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose. 2009;16:1033–45. https://doi.org/10.1007/s10570-009-9346-5.

    CAS 
    Article 

    Google Scholar 

  • Jiang Y, Yu G, Zhou Y, Liu Y, Feng Y, Li J, et al. Effects of sodium alginate on microstructural and properties of bacterial cellulose nanocrystal stabilized emulsions. Colloids Surf A Physicochemical Eng Asp. 2020;607:125474. https://doi.org/10.1016/j.colsurfa.2020.125474.

    CAS 
    Article 

    Google Scholar 

  • de Lima Fontes M, Meneguin AB, Tercjak A, Gutierrez J, Cury BSF, Dos Santos AM, et al. Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym. 2018;179:126–34. https://doi.org/10.1016/j.carbpol.2017.09.061.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Arias SL, Shetty AR, Senpan A, Echeverry-Rendón M, Reece LM, Allain JP, et al. Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles. J Vis Exp. 2016. https://doi.org/10.3791/52951.

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials. 2006;27:4661–70. https://doi.org/10.1016/j.biomaterials.2006.04.032.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ul-Islam M, Shah N, Ha JH, Park JK. Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng. 2011;28:1736–43. https://doi.org/10.1007/s11814-011-0042-4.

    CAS 
    Article 

    Google Scholar 

  • Cai ZJ, Yang G. Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci. 2011;120:2938–44. https://doi.org/10.1002/app.33318.

    CAS 
    Article 

    Google Scholar 

  • Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, Faria-Tischer PC. Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol. 2014;67:401–8. https://doi.org/10.1016/j.ijbiomac.2014.03.047.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, et al. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C. 2008;28:515–8. https://doi.org/10.1016/j.msec.2007.05.001.

    CAS 
    Article 

    Google Scholar 

  • Barud HS, Tercjak A, Gutierrez J, Viali WR, Nunes ES, Ribeiro SJL, et al. Biocellulose-based flexible magnetic paper. J Appl Phys. 2015;117:17B734. https://doi.org/10.1063/1.4917261.

    CAS 
    Article 

    Google Scholar 

  • Pourreza N, Golmohammadi H, Naghdi T, Yousefi H. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron. 2015;74:353–9. https://doi.org/10.1016/j.bios.2015.06.041.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mi Y, Wen L, Wang Z, Cao D, Zhao H, Zhou Y, et al. Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution. Catal Today. 2016;262:141–5. https://doi.org/10.1016/j.cattod.2015.08.019.

    CAS 
    Article 

    Google Scholar 

  • Ul-Islam M, Khan T, Park JK. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Carbohydr Polym. 2012;89:1189–97. https://doi.org/10.1016/j.carbpol.2012.03.093.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Iqbal HM, Kyazze G, Tron T, Keshavarz T. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation. Carbohydr Polym. 2014;113:131–7. https://doi.org/10.1016/j.carbpol.2014.07.003.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wang F, Kim HJ, Park S, Kee CD, Kim SJ, Oh I-K, et al. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos Sci Technol. 2016;128:33–40. https://doi.org/10.1016/j.compscitech.2016.03.012.

    CAS 
    Article 

    Google Scholar 

  • Wang B, Zhang HR, Huang C, Xiong L, Luo J, Chen X-D. Mechanical and rheological properties of isotactic polypropylene/bacterial cellulose composites. Polym Korea. 2017;41:460–4. https://doi.org/10.7317/pk.2017.41.3.460.

    CAS 
    Article 

    Google Scholar 

  • Singh A, Walker KT, Ledesma-Amaro R, Ellis T. Engineering bacterial cellulose by synthetic biology. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21239185.

  • Saxena IM, Kudlicka K, Okuda K, Brown RM Jr. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol. 1994;176:5735–52. https://doi.org/10.1128/jb.176.18.5735-5752.1994.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakai T, Tonouchi N, Konishi T, Kojima Y, Tsuchida T, Yoshinaga F, et al. Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proc Natl Acad Sci USA. 1999;96:14–8. https://doi.org/10.1073/pnas.96.1.14.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Chien LJ, Chen HT, Yang PF, Lee CK. Enhancement of cellulose pellicle production by constitutively expressing vitreoscilla hemoglobin in Acetobacter xylinum. Biotechnol Prog. 2006;22:1598–603. https://doi.org/10.1021/bp060157g.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Battad-Bernardo E, McCrindle SL, Couperwhite I, Neilan BA. Insertion of anE. coli lacZgene inAcetobacter xylinusfor the production of cellulose in whey. FEMS Microbiol Lett. 2004;231:253–60. https://doi.org/10.1016/s0378-1097(04)00007-2.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kawano S, Tajima K, Kono H, Erata T, Munekata M, Takai M. Effects of endogenous endo-β-1,4-glucanase on cellulose biosynthesis in Acetobacter xylinum ATCC23769. J Biosci Bioeng. 2002;94:275–81. https://doi.org/10.1016/s1389-1723(02)80162-1.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, et al. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng. 2005;99:415–22. https://doi.org/10.1263/jbb.99.415.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fang J, Kawano S, Tajima K, Kondo T. In vivo curdlan/cellulose bionanocomposite synthesis by genetically modified gluconacetobacter xylinus. Biomacromolecules. 2015;16:3154–60. https://doi.org/10.1021/acs.biomac.5b01075.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Yadav V, Paniliatis BJ, Shi H, Lee K, Cebe P, Kaplan DL, et al. Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol. 2010;76:6257–65. https://doi.org/10.1128/AEM.00698-10.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Moradi M, Jacek P, Farhangfar A, Guimaraes JT, Forough M. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: a review. Int J Biol Macromol. 2021;183:635–50. https://doi.org/10.1016/j.ijbiomac.2021.04.173.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Teh MY, Ooi KH, Danny Teo SX, Bin Mansoor ME, Shaun Lim WZ, Tan MH, et al. An expanded synthetic biology toolkit for gene expression control in acetobacteraceae. ACS Synth Biol. 2019;8:708–23. https://doi.org/10.1021/acssynbio.8b00168.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Walker KT, Goosens VJ, Das A, Graham AE, Ellis T. Engineered cell-to-cell signalling within growing bacterial cellulose pellicles. Micro Biotechnol. 2019;12:611–9. https://doi.org/10.1111/1751-7915.13340.

    CAS 
    Article 

    Google Scholar 

  • Huang LH, Liu QJ, Sun XW, Miao L, Jia SR, Xie YY, et al. Tailoring bacterial cellulose structure through CRISPR interference-mediated downregulation of galU in Komagataeibacter xylinus CGMCC 2955. Biotechnol Bioeng. 2020;117:2165–76. https://doi.org/10.1002/bit.27351.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Hur DH, Choi WS, Kim TY, Lee SY, Park JH, Jeong KJ. Enhanced production of bacterial cellulose in komagataeibacter xylinus via tuning of biosynthesis genes with synthetic RBS. J Microbiol Biotechnol. 2020;30:1430–5. https://doi.org/10.4014/jmb.2006.06026.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol. 2014;12:381–90. https://doi.org/10.1038/nrmicro3239.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Gao M, Li J, Bao Z, Hu M, Nian R, Feng D. A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun. 2019;10:437. https://doi.org/10.1038/s41467-018-07879-3.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yu J, Huang TR, Lim ZH, Luo R, Pasula RR, Liao LD. Production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing. Adv Health Mater. 2016;5:2983–92. https://doi.org/10.1002/adhm.201600898.

    CAS 
    Article 

    Google Scholar 

  • Yu J, Sun G, Lin NW, Vadanan SV and Lim S, Chen CH. Intelligent optofluidic analysis for ultrafast single bacterium profiling of cellulose production and morphology. Lab Chip. 2020;20:626–33. https://doi.org/10.1039/c9lc01105f.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kappel T, Anken RH. The tea-mushroom. Mycologist. 1993;7:12–3. https://doi.org/10.1016/s0269-915x(09)80616-2.

    Article 

    Google Scholar 

  • Seto A, Saito Y, Matsushige M, Kobayashi H, Sasaki Y, Tonouchi N, et al. Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Appl Microbiol Biotechnol. 2006;73:915–21. https://doi.org/10.1007/s00253-006-0515-2.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Liu K, Catchmark JM. Enhanced mechanical properties of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static conditions. Carbohydr Polym. 2019;219:12–20. https://doi.org/10.1016/j.carbpol.2019.04.071.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Liu K, Catchmark JM. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis in a two-vessel circulating system. Bioresour Technol. 2019;290:121715. https://doi.org/10.1016/j.biortech.2019.121715.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Ding R, Hu S, Xu M, Hu Q, Jiang S, Xu K, et al. The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter xylinus and Ralstonia eutropha. Carbohydr Polym. 2021;252:117137. https://doi.org/10.1016/j.carbpol.2020.117137.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Birnbaum DP, Manjula-Basavanna A, Kan A, Tardy BL, Joshi NS. Hybrid living capsules autonomously produced by engineered bacteria. Adv Sci. 2021;8:1–11. https://doi.org/10.1002/advs.202004699.

  • Gunduz G, Kiziltas EE, Kiziltas A, Gencer A, Aydemir D and Asik N. Production of bacterial cellulose fibers in the presence of effective microorganism. J Nat Fibers. 2018;16:567–75. https://doi.org/10.1080/15440478.2018.1428847.

    Article 

    Google Scholar 

  • Fijałkowski K, Peitler D, Rakoczy R, Żywicka A. Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT Food Sci Technol. 2016;68:322–8. https://doi.org/10.1016/j.lwt.2015.12.038.

    CAS 
    Article 

    Google Scholar 

  • Manjula-Basavanna A, Duraj-Thatte AM, Joshi NS. Robust self-regeneratable stiff living materials fabricated from microbial cells. Adv Funct Mater. 2021;31. https://doi.org/10.1002/adfm.202010784.

  • Gilbert C, Ellis T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth Biol. 2019;8:1–15. https://doi.org/10.1021/acssynbio.8b00423.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Chen AY, Zhong C, Lu TK. Engineering living functional materials. ACS Synth Biol. 2015;4:8–11. https://doi.org/10.1021/sb500113b.

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bae S, Shoda M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog. 2008;20:1366–71. https://doi.org/10.1021/bp0498490.

    CAS 
    Article 

    Google Scholar 

  • Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol. 2002;29:189–95. https://doi.org/10.1038/sj.jim.7000303.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Keshk S, Sameshima K. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol. 2006;72:291. https://doi.org/10.1007/s00253-005-0265-6.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Fang L, Catchmark JM. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydr Polym. 2015;115:663–9. https://doi.org/10.1016/j.carbpol.2014.09.028.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Czaja WK, Young DJ, Kawecki M, Brown RM Jr. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007;8:1–12. https://doi.org/10.1021/bm060620d.

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Kalia S, Dufresne A, Cherian MB, Kaith BS, Avérous L, Njuguna J, et al. Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci. 2011;2011:1–35. https://doi.org/10.1155/2011/837875.

    Article 

    Google Scholar 

  • Face mask- Czaja WK, et al. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007;8:1–12.

  • Source link