Klemm D, Heublein B, Fink HP, Bohn A. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl. 2005;44:3358–93. https://doi.org/10.1002/anie.200460587.
Google Scholar
Chawla PR, Bajaj IB, Survase SA, Singhal RS. Microbial cellulose fermentative production and applications. Food Technol Biotechnol 2009;47:107–24.
Google Scholar
Klemm D, Kramer F, Moritz S, Lindström T, Ankerfors M, Gray D, et al. Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed Engl. 2011;50:5438–66. https://doi.org/10.1002/anie.201001273.
Google Scholar
Iguchi M, Yamanaka S, Budhiono A. Review bacterial cellulose- a masterpiece of nature’s art. J Mater Sci. 2000;35:261–70.
Google Scholar
Lee KY, Buldum G, Mantalaris A, Bismarck A. More than meets the eye in bacterial cellulose: biosynthesis, bioprocessing, and applications in advanced fiber composites. Macromol Biosci. 2014;14:10–32. https://doi.org/10.1002/mabi.201300298.
Google Scholar
Festucci-Buselli RA, Otoni WC, Joshi CP. Structure, organization, and functions of cellulose synthase complexes in higher plants. Brazillian J Plant Physiol. 2007;19:1–13.
Esa F, Tasirin SM, Rahman NA. Overview of bacterial cellulose production and application. Agric Agric Sci Proced. 2014;2:113–9. https://doi.org/10.1016/j.aaspro.2014.11.017.
Google Scholar
Czaja W, Krystynowicz A, Bielecki S, Brown RM Jr. Microbial cellulose–the natural power to heal wounds. Biomaterials. 2006;27:145–51. https://doi.org/10.1016/j.biomaterials.2005.07.035.
Google Scholar
Shah J, Brown RM Jr. Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol. 2005;66:352–5. https://doi.org/10.1007/s00253-004-1756-6.
Google Scholar
Keshk SMAS. Bacterial cellulose production and its industrial applications. J Bioprocessing Biotechniques. 2014;04. https://doi.org/10.4172/2155-9821.1000150.
Shezad O, Khan S, Khan T, Park JK. Physicochemical and mechanical characterization of bacterial cellulose produced with an excellent productivity in static conditions using a simple fed-batch cultivation strategy. Carbohydr Polym. 2010;82:173–80. https://doi.org/10.1016/j.carbpol.2010.04.052.
Google Scholar
Microbial products: technologies, applications and global markets. https://www.bccresearch.com/market-research/biotechnology/microbial-products-technologies-applications-and-global-markets-report.html.
Klemm D, Emily DC, Fischer D, Gama M, Kedzior AA, Kralisch D, et al. Nanocellulose as a natural source for groundbreaking applications in materials science: today’s state. Mater Today. 2018;21:720–48. https://doi.org/10.1016/j.mattod.2018.02.001.
Google Scholar
Gilbert C, Tang TC, Ott W, Dorr BA, Shaw WM, Sun LG, et al. Living materials with programmable functionalities grown from engineered microbial co-cultures. Nat Mater. 2021;20:691–700. https://doi.org/10.1038/s41563-020-00857-5.
Google Scholar
Tang TC, An B, Huang Y, Vasikaran S, Wang Y, Jiang X, et al. Materials design by synthetic biology. Nat Rev Mater. 2021;6:332–50. https://doi.org/10.1038/s41578-020-00265-w.
Google Scholar
Zakeri B. Synthetic biology: a new tool for the trade. Chembiochem. 2015;16:2277–82. https://doi.org/10.1002/cbic.201500372.
Google Scholar
Florea M, Hagemann H, Santosa G, Abbott J, Micklem NC, Spencer-Milnes X, et al. Engineering control of bacterial cellulose production using a genetic toolkit and a new cellulose-producing strain. Proc Natl Acad Sci USA. 2016;113:E3431–40. https://doi.org/10.1073/pnas.1522985113.
Google Scholar
Tran P, Prindle A. Synthetic biology in biofilms: tools, challenges, and opportunities. Biotechnol Prog. 2021:e3123. https://doi.org/10.1002/btpr.3123.
Hu W, Chen S, Yang J, Li Z, Wang H. Functionalized bacterial cellulose derivatives and nanocomposites. Carbohydr Polym. 2014;101:1043–60. https://doi.org/10.1016/j.carbpol.2013.09.102.
Google Scholar
Moon RJ, Martini A, Nairn J, Simonsen J, Youngblood J. Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. 2011;40:3941–94. https://doi.org/10.1039/c0cs00108b.
Google Scholar
Jacek P, Ryngajllo M, Bielecki S. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769. Appl Microbiol Biotechnol. 2019;103:5339–53. https://doi.org/10.1007/s00253-019-09846-4.
Google Scholar
Florea M, Reeve B, Abbott J, Freemont PS, Ellis T. Genome sequence and plasmid transformation of the model high-yield bacterial cellulose producer Gluconacetobacter hansenii ATCC 53582. Sci Rep. 2016;6:23635. https://doi.org/10.1038/srep23635.
Google Scholar
Cannon RE, Anderson SM. Biogenesis of bacterial cellulose. Crit Rev Microbiol. 1991;17:435–47. https://doi.org/10.3109/10408419109115207.
Google Scholar
Yamanaka S, Sugiyama J. Structural modification of bacterial. Cellul Cellul. 2000;7:213–25. https://doi.org/10.1023/A:1009208022957.
Google Scholar
Rehm BH. Bacterial polymers: biosynthesis, modifications and applications. Nat Rev Microbiol. 2010;8:578–92. https://doi.org/10.1038/nrmicro2354.
Google Scholar
Basu A, Vadanan SV, Lim S. A novel platform for evaluating the environmental impacts on bacterial cellulose production. Sci Rep. 2018;8:5780. https://doi.org/10.1038/s41598-018-23701-y.
Google Scholar
Schramm M, Hestrin S. Factors affecting production of cellulose at the air/ liquid interface of a culture of acetobacter xylinum. Microbiology. 1954;11:123–9. https://doi.org/10.1099/00221287-11-1-123.
Google Scholar
Hornung M, Ludwig M, Gerrard AM, Schmauder HP. Optimizing the production of bacterial cellulose in surface culture: evaluation of substrate mass transfer influences on the bioreaction (Part 1). Eng Life Sci. 2006;6:537–45. https://doi.org/10.1002/elsc.200620162.
Google Scholar
Hwang JW, Yang YK, Hwang JK, Pyun YR, Kim YS. Effects of pH and dissolved oxygen on cellulose production by Acetobacter xylinum BRC5 in agitated culture. J Biosci Bioeng. 1999;88:183–8. https://doi.org/10.1016/S1389-1723(99)80199-6.
Google Scholar
Toyosaki H, Naritomi T, Seto A, Matsuoka M, Tsuchida T, Yoshinaga F. Screening of bacterial cellulose-producing acetobacter strains suitable for agitated culture. Biosci Biotechnol Biochem. 2014;59:1498–502. https://doi.org/10.1271/bbb.59.1498.
Google Scholar
Yamanaka S, Watanabe K, Kitamura N, Iguchi M, Mitsuhashi S, Nishi Y, et al. The structure and mechanical properties of sheets prepared from bacterial cellulose. J Mater Sci. 1989;24:3141–5. https://doi.org/10.1007/BF01139032.
Google Scholar
Zhou LL, Sun DP, Hu LY, Li YW, Yang JZ. Effect of addition of sodium alginate on bacterial cellulose production by Acetobacter xylinum. J Ind Microbiol Biotechnol. 2007;34:483–9. https://doi.org/10.1007/s10295-007-0218-4.
Google Scholar
Son HJ, Kim HG, Kim KK, Kim HS, Kim YG, Lee SJ. Increased production of bacterial cellulose by Acetobacter sp. V6 in synthetic media under shaking culture conditions. Bioresour Technol. 2003;86:215–9. https://doi.org/10.1016/S0960-8524(02)00176-1.
Google Scholar
Mikkelsen D, Flanagan BM, Dykes GA, Gidley MJ. Influence of different carbon sources on bacterial cellulose production by Gluconacetobacter xylinus strain ATCC 53524. J Appl Microbiol. 2009;107:576–83. https://doi.org/10.1111/j.1365-2672.2009.04226.x.
Google Scholar
Nguyen VT, Flanagan B, Gidley MJ, Dykes GA. Characterization of cellulose production by a Gluconacetobacter xylinus strain from Kombucha. Curr Microbiol. 2008;57:449–53. https://doi.org/10.1007/s00284-008-9228-3.
Google Scholar
Ishihara M, Matsunaga M, Hayashi N, Tišler V. Utilization of d-xylose as carbon source for production of bacterial cellulose. Enzym Microb Technol. 2002;31:986–91. https://doi.org/10.1016/S0141-0229(02)00215-6.
Google Scholar
Pourramezan GZ, Roayaei AM, Qezelbash QR. Optimization of culture conditions for bacterial cellulose production by Acetobacter sp. 4B-2. Biotechnology. 2009;8:150–4.
Google Scholar
Coban EP, Biyik H. Effect of various carbon and nitrogen sources on cellulose synthesis by Acetobacter lovaniensis HBB5. Afr J Biotechnol. 2011;10:46. https://doi.org/10.5897/AJB10.1693.
Google Scholar
Hirai A, Tsuji M, Horii F. Culture conditions producing structure entities composed of Cellulose I and II in bacterial cellulose. Cellulose. 1997;4:239–45. https://doi.org/10.1023/a:1018439907396.
Google Scholar
Zeng X, Liu J, Chen J, Wang Q, Li Z, Wang H. Screening of the common culture conditions affecting crystallinity of bacterial cellulose. J Ind Microbiol Biotechnol. 2011;38:1993–9. https://doi.org/10.1007/s10295-011-0989-5.
Google Scholar
Hutchens SA, Leon RV, O’Neill HM, Evans BR. Statistical analysis of optimal culture conditions for Gluconacetobacter hansenii cellulose production. Lett Appl Microbiol. 2007;44:175–80. https://doi.org/10.1111/j.1472-765X.2006.02055.x.
Google Scholar
Aloni Y, Delmer DP, Benziman M. Achievement of high rates of in vitro synthesis of 1,4-beta-D-glucan: activation by cooperative interaction of the Acetobacter xylinum enzyme system with GTP, polyethylene glycol, and a protein factor. Proc Natl Acad Sci USA. 1982;79:6448–52. https://doi.org/10.1073/pnas.79.21.6448.
Google Scholar
Ross P, Mayer R, Benziman M. Cellulose biosynthesis and function in Bacteria. Microbiol Rev. 1991;55:35–58.
Google Scholar
Basu A, Vadanan SV, Lim S. Rational design of a scalable bioprocess platform for bacterial cellulose production. Carbohydr Polym. 2019;207:684–93. https://doi.org/10.1016/j.carbpol.2018.10.085.
Google Scholar
Xie H, Du H, Yang X, Si C. Recent strategies in preparation of cellulose nanocrystals and cellulose nanofibrils derived from raw cellulose materials. Int J Polym Sci. 2018;2018:1–25. https://doi.org/10.1155/2018/7923068.
Google Scholar
Lindman B, Karlström G, Stigsson L. On the mechanism of dissolution of cellulose. J Mol Liq. 2010;156:76–81. https://doi.org/10.1016/j.molliq.2010.04.016.
Google Scholar
Xiong B, Zhao P, Hu K, Zhang L, Cheng G. Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose. 2014;21:1183–92. https://doi.org/10.1007/s10570-014-0221-7.
Google Scholar
Shanshan G, Jianqing W, Zhengwei J. Preparation of cellulose films from solution of bacterial cellulose in NMMO. Carbohydr Polym. 2012;87:1020–5. https://doi.org/10.1016/j.carbpol.2011.06.040.
Google Scholar
Jin H, Zha C, Gu L. Direct dissolution of cellulose in NaOH/thiourea/urea aqueous solution. Carbohydr Res. 2007;342:851–8. https://doi.org/10.1016/j.carres.2006.12.023.
Google Scholar
Pham TTH, Vadanan SV, Lim S. Enhanced rheological properties and conductivity of bacterial cellulose hydrogels and aerogels through complexation with metal ions and PEDOT/PSS. Cellulose. 2020;27:8075–86. https://doi.org/10.1007/s10570-020-03284-6.
Google Scholar
Abe K, Iwamoto S, Yano H. Obtaining cellulose nanofibers with a uniform width of 15 nm from wood. Biomacromolecules. 2007;8:3276–8. https://doi.org/10.1021/bm700624p.
Google Scholar
Turbak AF, Snyder FW, Sandberg KR. Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. Shelton, WA: ITT Rayonier Inc.; 1983.
Wang S, Cheng Q. A novel process to isolate fibrils from cellulose fibers by high-intensity ultrasonication, part 1: process optimization. J Appl Polym Sci. 2009;113:1270–5. https://doi.org/10.1002/app.30072.
Google Scholar
Yates MR, Barlow CY. Life cycle assessments of biodegradable, commercial biopolymers—a critical review. 2013;78:54–66.
Figueiredo ARP, Vilela C, Neto CP, Silvestre AJD, Freire CSR. Bacterial cellulose-based nanocomposites—roadmap for innovative materials. Nanocellulose polymer nanocomposites: fundamentals and applications. Wiley, USA: Scrivener Publishing. 2014:17–62. https://doi.org/10.1002/9781118872246.ch2.
Shah N, Ul-Islam M, Khattak WA, Park JK. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydr Polym. 2013;98:1585–98. https://doi.org/10.1016/j.carbpol.2013.08.018.
Google Scholar
Yan Z, Chen S, Wang H, Wang B, Jiang J. Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr Polym. 2008;74:659–65. https://doi.org/10.1016/j.carbpol.2008.04.028.
Google Scholar
Zhu W, Li W, He Y, Duan T. In-situ biopreparation of biocompatible bacterial cellulose/graphene oxide composites pellets. Appl Surf Sci. 2015;338:22–6. https://doi.org/10.1016/j.apsusc.2015.02.030.
Google Scholar
Müller D, Cercená R, Gutiérrez Aguayo AJ, Porto LM, Rambo CR, Barra GMO. Flexible PEDOT-nanocellulose composites produced by in situ oxidative polymerization for passive components in frequency filters. J Mater Sci Mater Electron. 2016;27:8062–7. https://doi.org/10.1007/s10854-016-4804-y.
Google Scholar
Müller D, Mandelli JS, Marins AJ, Soares BG, Porto LM, Rambo CR, et al. Electrically conducting nanocomposites: preparation and properties of polyaniline (PAni)-coated bacterial cellulose nanofibers (BC). Cellulose. 2012;19:1645–54. https://doi.org/10.1007/s10570-012-9754-9.
Google Scholar
Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO. Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met. 2011;161:106–11. https://doi.org/10.1016/j.synthmet.2010.11.005.
Google Scholar
Ruka DR, Simon GP, Dean KM. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate. Carbohydr Polym. 2013;92:1717–23. https://doi.org/10.1016/j.carbpol.2012.11.007.
Google Scholar
Saibuatong O-a, Phisalaphong M. Novo aloe vera–bacterial cellulose composite film from biosynthesis. Carbohydr Polym. 2010;79:455–60. https://doi.org/10.1016/j.carbpol.2009.08.039.
Google Scholar
Cheng K-C, Catchmark JM, Demirci A. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property. Cellulose. 2009;16:1033–45. https://doi.org/10.1007/s10570-009-9346-5.
Google Scholar
Jiang Y, Yu G, Zhou Y, Liu Y, Feng Y, Li J, et al. Effects of sodium alginate on microstructural and properties of bacterial cellulose nanocrystal stabilized emulsions. Colloids Surf A Physicochemical Eng Asp. 2020;607:125474. https://doi.org/10.1016/j.colsurfa.2020.125474.
Google Scholar
de Lima Fontes M, Meneguin AB, Tercjak A, Gutierrez J, Cury BSF, Dos Santos AM, et al. Effect of in situ modification of bacterial cellulose with carboxymethylcellulose on its nano/microstructure and methotrexate release properties. Carbohydr Polym. 2018;179:126–34. https://doi.org/10.1016/j.carbpol.2017.09.061.
Google Scholar
Arias SL, Shetty AR, Senpan A, Echeverry-Rendón M, Reece LM, Allain JP, et al. Fabrication of a functionalized magnetic bacterial nanocellulose with iron oxide nanoparticles. J Vis Exp. 2016. https://doi.org/10.3791/52951.
Google Scholar
Hutchens SA, Benson RS, Evans BR, O’Neill HM, Rawn CJ. Biomimetic synthesis of calcium-deficient hydroxyapatite in a natural hydrogel. Biomaterials. 2006;27:4661–70. https://doi.org/10.1016/j.biomaterials.2006.04.032.
Google Scholar
Ul-Islam M, Shah N, Ha JH, Park JK. Effect of chitosan penetration on physico-chemical and mechanical properties of bacterial cellulose. Korean J Chem Eng. 2011;28:1736–43. https://doi.org/10.1007/s11814-011-0042-4.
Google Scholar
Cai ZJ, Yang G. Bacterial cellulose/collagen composite: characterization and first evaluation of cytocompatibility. J Appl Polym Sci. 2011;120:2938–44. https://doi.org/10.1002/app.33318.
Google Scholar
Lopes TD, Riegel-Vidotti IC, Grein A, Tischer CA, Faria-Tischer PC. Bacterial cellulose and hyaluronic acid hybrid membranes: production and characterization. Int J Biol Macromol. 2014;67:401–8. https://doi.org/10.1016/j.ijbiomac.2014.03.047.
Google Scholar
Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, et al. Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C. 2008;28:515–8. https://doi.org/10.1016/j.msec.2007.05.001.
Google Scholar
Barud HS, Tercjak A, Gutierrez J, Viali WR, Nunes ES, Ribeiro SJL, et al. Biocellulose-based flexible magnetic paper. J Appl Phys. 2015;117:17B734. https://doi.org/10.1063/1.4917261.
Google Scholar
Pourreza N, Golmohammadi H, Naghdi T, Yousefi H. Green in-situ synthesized silver nanoparticles embedded in bacterial cellulose nanopaper as a bionanocomposite plasmonic sensor. Biosens Bioelectron. 2015;74:353–9. https://doi.org/10.1016/j.bios.2015.06.041.
Google Scholar
Mi Y, Wen L, Wang Z, Cao D, Zhao H, Zhou Y, et al. Ultra-low mass loading of platinum nanoparticles on bacterial cellulose derived carbon nanofibers for efficient hydrogen evolution. Catal Today. 2016;262:141–5. https://doi.org/10.1016/j.cattod.2015.08.019.
Google Scholar
Ul-Islam M, Khan T, Park JK. Nanoreinforced bacterial cellulose-montmorillonite composites for biomedical applications. Carbohydr Polym. 2012;89:1189–97. https://doi.org/10.1016/j.carbpol.2012.03.093.
Google Scholar
Iqbal HM, Kyazze G, Tron T, Keshavarz T. Laccase-assisted grafting of poly(3-hydroxybutyrate) onto the bacterial cellulose as backbone polymer: development and characterisation. Carbohydr Polym. 2014;113:131–7. https://doi.org/10.1016/j.carbpol.2014.07.003.
Google Scholar
Wang F, Kim HJ, Park S, Kee CD, Kim SJ, Oh I-K, et al. Bendable and flexible supercapacitor based on polypyrrole-coated bacterial cellulose core-shell composite network. Compos Sci Technol. 2016;128:33–40. https://doi.org/10.1016/j.compscitech.2016.03.012.
Google Scholar
Wang B, Zhang HR, Huang C, Xiong L, Luo J, Chen X-D. Mechanical and rheological properties of isotactic polypropylene/bacterial cellulose composites. Polym Korea. 2017;41:460–4. https://doi.org/10.7317/pk.2017.41.3.460.
Google Scholar
Singh A, Walker KT, Ledesma-Amaro R, Ellis T. Engineering bacterial cellulose by synthetic biology. Int J Mol Sci. 2020;21. https://doi.org/10.3390/ijms21239185.
Saxena IM, Kudlicka K, Okuda K, Brown RM Jr. Characterization of genes in the cellulose-synthesizing operon (acs operon) of Acetobacter xylinum: implications for cellulose crystallization. J Bacteriol. 1994;176:5735–52. https://doi.org/10.1128/jb.176.18.5735-5752.1994.
Google Scholar
Nakai T, Tonouchi N, Konishi T, Kojima Y, Tsuchida T, Yoshinaga F, et al. Enhancement of cellulose production by expression of sucrose synthase in Acetobacter xylinum. Proc Natl Acad Sci USA. 1999;96:14–8. https://doi.org/10.1073/pnas.96.1.14.
Google Scholar
Chien LJ, Chen HT, Yang PF, Lee CK. Enhancement of cellulose pellicle production by constitutively expressing vitreoscilla hemoglobin in Acetobacter xylinum. Biotechnol Prog. 2006;22:1598–603. https://doi.org/10.1021/bp060157g.
Google Scholar
Battad-Bernardo E, McCrindle SL, Couperwhite I, Neilan BA. Insertion of anE. coli lacZgene inAcetobacter xylinusfor the production of cellulose in whey. FEMS Microbiol Lett. 2004;231:253–60. https://doi.org/10.1016/s0378-1097(04)00007-2.
Google Scholar
Kawano S, Tajima K, Kono H, Erata T, Munekata M, Takai M. Effects of endogenous endo-β-1,4-glucanase on cellulose biosynthesis in Acetobacter xylinum ATCC23769. J Biosci Bioeng. 2002;94:275–81. https://doi.org/10.1016/s1389-1723(02)80162-1.
Google Scholar
Shigematsu T, Takamine K, Kitazato M, Morita T, Naritomi T, Morimura S, et al. Cellulose production from glucose using a glucose dehydrogenase gene (gdh)-deficient mutant of Gluconacetobacter xylinus and its use for bioconversion of sweet potato pulp. J Biosci Bioeng. 2005;99:415–22. https://doi.org/10.1263/jbb.99.415.
Google Scholar
Fang J, Kawano S, Tajima K, Kondo T. In vivo curdlan/cellulose bionanocomposite synthesis by genetically modified gluconacetobacter xylinus. Biomacromolecules. 2015;16:3154–60. https://doi.org/10.1021/acs.biomac.5b01075.
Google Scholar
Yadav V, Paniliatis BJ, Shi H, Lee K, Cebe P, Kaplan DL, et al. Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl Environ Microbiol. 2010;76:6257–65. https://doi.org/10.1128/AEM.00698-10.
Google Scholar
Moradi M, Jacek P, Farhangfar A, Guimaraes JT, Forough M. The role of genetic manipulation and in situ modifications on production of bacterial nanocellulose: a review. Int J Biol Macromol. 2021;183:635–50. https://doi.org/10.1016/j.ijbiomac.2021.04.173.
Google Scholar
Teh MY, Ooi KH, Danny Teo SX, Bin Mansoor ME, Shaun Lim WZ, Tan MH, et al. An expanded synthetic biology toolkit for gene expression control in acetobacteraceae. ACS Synth Biol. 2019;8:708–23. https://doi.org/10.1021/acssynbio.8b00168.
Google Scholar
Walker KT, Goosens VJ, Das A, Graham AE, Ellis T. Engineered cell-to-cell signalling within growing bacterial cellulose pellicles. Micro Biotechnol. 2019;12:611–9. https://doi.org/10.1111/1751-7915.13340.
Google Scholar
Huang LH, Liu QJ, Sun XW, Miao L, Jia SR, Xie YY, et al. Tailoring bacterial cellulose structure through CRISPR interference-mediated downregulation of galU in Komagataeibacter xylinus CGMCC 2955. Biotechnol Bioeng. 2020;117:2165–76. https://doi.org/10.1002/bit.27351.
Google Scholar
Hur DH, Choi WS, Kim TY, Lee SY, Park JH, Jeong KJ. Enhanced production of bacterial cellulose in komagataeibacter xylinus via tuning of biosynthesis genes with synthetic RBS. J Microbiol Biotechnol. 2020;30:1430–5. https://doi.org/10.4014/jmb.2006.06026.
Google Scholar
Cameron DE, Bashor CJ, Collins JJ. A brief history of synthetic biology. Nat Rev Microbiol. 2014;12:381–90. https://doi.org/10.1038/nrmicro3239.
Google Scholar
Gao M, Li J, Bao Z, Hu M, Nian R, Feng D. A natural in situ fabrication method of functional bacterial cellulose using a microorganism. Nat Commun. 2019;10:437. https://doi.org/10.1038/s41467-018-07879-3.
Google Scholar
Yu J, Huang TR, Lim ZH, Luo R, Pasula RR, Liao LD. Production of hollow bacterial cellulose microspheres using microfluidics to form an injectable porous scaffold for wound healing. Adv Health Mater. 2016;5:2983–92. https://doi.org/10.1002/adhm.201600898.
Google Scholar
Yu J, Sun G, Lin NW, Vadanan SV and Lim S, Chen CH. Intelligent optofluidic analysis for ultrafast single bacterium profiling of cellulose production and morphology. Lab Chip. 2020;20:626–33. https://doi.org/10.1039/c9lc01105f.
Google Scholar
Kappel T, Anken RH. The tea-mushroom. Mycologist. 1993;7:12–3. https://doi.org/10.1016/s0269-915x(09)80616-2.
Google Scholar
Seto A, Saito Y, Matsushige M, Kobayashi H, Sasaki Y, Tonouchi N, et al. Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Appl Microbiol Biotechnol. 2006;73:915–21. https://doi.org/10.1007/s00253-006-0515-2.
Google Scholar
Liu K, Catchmark JM. Enhanced mechanical properties of bacterial cellulose nanocomposites produced by co-culturing Gluconacetobacter hansenii and Escherichia coli under static conditions. Carbohydr Polym. 2019;219:12–20. https://doi.org/10.1016/j.carbpol.2019.04.071.
Google Scholar
Liu K, Catchmark JM. Bacterial cellulose/hyaluronic acid nanocomposites production through co-culturing Gluconacetobacter hansenii and Lactococcus lactis in a two-vessel circulating system. Bioresour Technol. 2019;290:121715. https://doi.org/10.1016/j.biortech.2019.121715.
Google Scholar
Ding R, Hu S, Xu M, Hu Q, Jiang S, Xu K, et al. The facile and controllable synthesis of a bacterial cellulose/polyhydroxybutyrate composite by co-culturing Gluconacetobacter xylinus and Ralstonia eutropha. Carbohydr Polym. 2021;252:117137. https://doi.org/10.1016/j.carbpol.2020.117137.
Google Scholar
Birnbaum DP, Manjula-Basavanna A, Kan A, Tardy BL, Joshi NS. Hybrid living capsules autonomously produced by engineered bacteria. Adv Sci. 2021;8:1–11. https://doi.org/10.1002/advs.202004699.
Gunduz G, Kiziltas EE, Kiziltas A, Gencer A, Aydemir D and Asik N. Production of bacterial cellulose fibers in the presence of effective microorganism. J Nat Fibers. 2018;16:567–75. https://doi.org/10.1080/15440478.2018.1428847.
Google Scholar
Fijałkowski K, Peitler D, Rakoczy R, Żywicka A. Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT Food Sci Technol. 2016;68:322–8. https://doi.org/10.1016/j.lwt.2015.12.038.
Google Scholar
Manjula-Basavanna A, Duraj-Thatte AM, Joshi NS. Robust self-regeneratable stiff living materials fabricated from microbial cells. Adv Funct Mater. 2021;31. https://doi.org/10.1002/adfm.202010784.
Gilbert C, Ellis T. Biological engineered living materials: growing functional materials with genetically programmable properties. ACS Synth Biol. 2019;8:1–15. https://doi.org/10.1021/acssynbio.8b00423.
Google Scholar
Chen AY, Zhong C, Lu TK. Engineering living functional materials. ACS Synth Biol. 2015;4:8–11. https://doi.org/10.1021/sb500113b.
Google Scholar
Bae S, Shoda M. Bacterial cellulose production by fed-batch fermentation in molasses medium. Biotechnol Prog. 2008;20:1366–71. https://doi.org/10.1021/bp0498490.
Google Scholar
Krystynowicz A, Czaja W, Wiktorowska-Jezierska A, Gonçalves-Miśkiewicz M, Turkiewicz M, Bielecki S. Factors affecting the yield and properties of bacterial cellulose. J Ind Microbiol Biotechnol. 2002;29:189–95. https://doi.org/10.1038/sj.jim.7000303.
Google Scholar
Keshk S, Sameshima K. The utilization of sugar cane molasses with/without the presence of lignosulfonate for the production of bacterial cellulose. Appl Microbiol Biotechnol. 2006;72:291. https://doi.org/10.1007/s00253-005-0265-6.
Google Scholar
Fang L, Catchmark JM. Characterization of cellulose and other exopolysaccharides produced from Gluconacetobacter strains. Carbohydr Polym. 2015;115:663–9. https://doi.org/10.1016/j.carbpol.2014.09.028.
Google Scholar
Czaja WK, Young DJ, Kawecki M, Brown RM Jr. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules. 2007;8:1–12. https://doi.org/10.1021/bm060620d.
Google Scholar
Kalia S, Dufresne A, Cherian MB, Kaith BS, Avérous L, Njuguna J, et al. Cellulose-based bio- and nanocomposites: a review. Int J Polym Sci. 2011;2011:1–35. https://doi.org/10.1155/2011/837875.
Google Scholar
Face mask- Czaja WK, et al. The future prospects of microbial cellulose in biomedical applications. Biomacromolecules, 2007;8:1–12.

