Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005).
Google Scholar
Lynd, L. R., Weimer, P. J., Van Zyl, W. H. & Pretorius, I. S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002).
Google Scholar
Santos, R. A. C. et al. Draft genome sequence of Komagataeibacter rhaeticus strain AF1, a high producer of cellulose, isolated from Kombucha tea. Genome Announc. 2, e00731-14 (2014).
Google Scholar
Huang, et al. Recent advances in bacterial cellulose. Cellulose 21, 1–30 (2014).
Du, R., Zhao, F., Peng, Q., Zhou, Z. & Han, Y. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr. Polym. 194, 200–207 (2018).
Google Scholar
Dubey, S. et al. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. Int J Bio Macromol 96, 52–60 (2017).
Google Scholar
Brown, A. J. XIX.—The chemical action of pure cultivations of bacterium aceti. J. Chem. Soc. Trans. 49, 172–187 (1886).
Google Scholar
Stroescu, M., Isopencu, G., Busuioc, C. & Stoica-Guzun, A. Cellulose-Based Superabsorbent Hydrogels 1–36 (Springer, 2018).
Gadim, T. D. et al. Nanostructured bacterial cellulose–poly (4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. ACS Appl. Mater. Interfaces. 6, 7864–7875 (2014).
Google Scholar
Brandes, R. et al. Spherical bacterial cellulose/TiO2 nanocomposite with potential application in contaminants removal from wastewater by photocatalysis. Fibers Polym. 19, 1861–1868 (2018).
Google Scholar
Savitskaya, I., Shokatayeva, D., Kistaubayeva, A., Ignatova, L. & Digel, I. Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells. Heliyon 5, e02592 (2019).
Google Scholar
Pacheco, G. et al. Bacterial cellulose skin masks—Properties and sensory tests. J. Cosmet. Dermatol 17, 840–847 (2018).
Google Scholar
Perugini, P., Bleve, M., Cortinovis, F. & Colpani, A. Biocellulose masks as delivery systems: A novel methodological approach to assure quality and safety. Cosmetics 5, 66 (2018).
Google Scholar
Chiaoprakobkij, N., Seetabhawang, S., Sanchavanakit, N. & Phisalaphong, M. Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film. J. Biomater. Sci. Polym. Ed. 30, 961–982 (2019).
Google Scholar
Novikov, I. V. et al. Green approach for fabrication of bacterial cellulose-chitosan composites in the solutions of carbonic acid under high pressure CO2. Carbohydr Polym 258, 117614 (2021).
Google Scholar
Numata, Y., Kono, H., Tsuji, M. & Tajima, K. Structural and mechanical characterization of bacterial cellulose–polyethylene glycol diacrylate composite gels. Carbohydr. Polym. 173, 67–76 (2017).
Google Scholar
Unal, S. et al. Production and characterization of bacterial cellulose scaffold and its modification with hyaluronic acid and gelatin for glioblastoma cell culture. Cellulose 28, 117–132 (2021).
Google Scholar
Costa, A., Rocha, M. A. V. & Sarubbo, L. Bacterial cellulose: An ecofriendly biotextile. Int. J. Text. Fashion Technol. 7, 11–26 (2017).
Wang, J., Tavakoli, J. & Tang, Y. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 219, 63–76 (2019).
Google Scholar
Islam, M. U., Ullah, M. W., Khan, S., Shah, N. & Park, J. K. Strategies for cost-effective and enhanced production of bacterial cellulose. Int. J. Biol. Macromol. 102, 1166–1173 (2017).
Google Scholar
Shah, N., Ul-Islam, M., Khattak, W. A. & Park, J. K. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr. Polym. 98, 1585–1598 (2013).
Google Scholar
Saleh, A. K. et al. Statistical optimization and characterization of a biocellulose produced by local Egyptian isolate Komagataeibacter hansenii AS. 5. Int. J. Biol. Macromol. 144, 198–207 (2020).
Google Scholar
Meza-Contreras, J. C., Manriquez-Gonzalez, R., Gutiérrez-Ortega, J. A. & Gonzalez-Garcia, Y. XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses. Carbohydr. Res. 461, 51–59 (2018).
Google Scholar
Hur, D. H. et al. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene. Biochem. Eng. J. 156, 107527 (2020).
Google Scholar
Naloka, K., Matsushita, K. & Theeragool, G. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. Int. J. Biol. Macromol. 150, 1113–1120 (2020).
Google Scholar
Khan, H., Kadam, A. & Dutt, D. Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydr. Polym. 229, 115513 (2020).
Google Scholar
Seto, A. et al. Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Appl. Microbiol. Biotechnol. 73, 915–921 (2006).
Google Scholar
Bagewadi, Z. K., Bhavikatti, J. S., Muddapur, U. M., Yaraguppi, D. A. & Mulla, S. I. Statistical optimization and characterization of bacterial cellulose produced by isolated thermophilic Bacillus licheniformis strain ZBT2. Carbohydr. Res. 491, 107979 (2020).
Google Scholar
Zhu, H., Zhang, Y., Wang, J., Li, Y. & Lin, W. Advances in Applied Biotechnology 109–119 (Springer, 2015).
Rastogi, A. & Banerjee, R. Production and characterization of cellulose from Leifsonia sp. Process Biochem. 85, 35–42 (2019).
Google Scholar
Velmurugan, P. et al. Production and characterization of bacterial cellulose by Leifsonia sp. CBNU-EW3 isolated from the earthworm, Eisenia fetida. Biotechnol. Bioprocess Eng. 20, 410–416 (2015).
Google Scholar
Tanskul, S., Amornthatree, K. & Jaturonlak, N. A new cellulose-producing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions. Carbohydr. Polym. 92, 421–428 (2013).
Google Scholar
Khera, A. S. et al. Evaluation of culture requirements for cellulose production by Egyptian local isolate alongside reference strain gluconaceto-bacter hansenii ATCC 23769. Pak. J. Biotechnol. 16, 69–80 (2019).
Zahan, K. A. et al. Effect of incubation temperature on growth of Acetobacter xylinum 0416 and bacterial cellulose production. In Appl Mech Mater, Vol 815 (2015).
Bıyık, H. & Çoban, E. P. Evaluation of different carbon, nitrogen sources and industrial wastes for bacterial cellulose production. Evaluation 5, 74–80 (2017).
Ramírez, C. et al. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials 10, 639 (2017).
Google Scholar
Arockiasamy, S. & Banik, R. M. Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J. Biosci. Bioeng. 105, 204–210 (2008).
Google Scholar
Yatsyshyn, V. Y., Fedorovych, D. V. & Sibirny, A. A. Medium optimization for production of flavin mononucleotide by the recombinant strain of the yeast Candida famata using statistical designs. Biochem. Eng. J. 49, 52–60 (2010).
Google Scholar
Bae, S. & Shoda, M. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol. Bioeng. 90, 20–28 (2005).
Google Scholar
Plackett, R. L. & Burman, J. P. The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946).
Google Scholar
Naveena, B., Altaf, M., Bhadriah, K. & Reddy, G. Selection of medium components by Plackett-Burman design for production of L (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour. Technol. 96, 485–490 (2005).
Google Scholar
Farrag, A. A. et al. Biocellulose production by Gluconacetobacter hansenii ATCC 23769: Application of statistical experimental designs and cellulose membrane characterization. Egypt. J. Chem. 62, 2077–2092 (2019).
Aytekin, A. Ö., Demirbağ, D. D. & Bayrakdar, T. The statistical optimization of bacterial cellulose production via semi-continuous operation mode. J. Ind. Eng. Chem. 37, 243–250 (2016).
Google Scholar
Park, J. K., Park, Y. H. & Jung, J. Y. Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnol. Bioprocess. Eng. 8, 83 (2003).
Google Scholar
Hungund, B. S. & Gupta, S. Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J. Microbiol. Biotechnol. 26, 1823–1828 (2010).
Google Scholar
Jahan, F., Kumar, V., Rawat, G. & Saxena, R. Production of microbial cellulose by a bacterium isolated from fruit. Appl. Biochem. Biotechnol. 167, 1157–1171 (2012).
Google Scholar
Fernandes, I. D. A. A. et al. Bacterial cellulose: From production optimization to new applications. Int. J. Biol. Macromol. 164, 2598–2611 (2020).
Google Scholar
Jozala, A. F. et al. Bacterial nanocellulose production and application: A 10-year overview. Appl. Microbiol. Biotechnol. 100, 2063–2072 (2016).
Google Scholar
Aswini, K., Gopal, N. & Uthandi, S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol. 20, 1–16 (2020).
Santoso, S. P. et al. Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling. Cellulose 27, 2497–2509 (2020).
Google Scholar
Son, H. J., Heo, M. S., Kim, Y. G. & Lee, S. J. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter. Biotechnol. Appl. Biochem. 33, 1–5 (2001).
Google Scholar
Müller, T., Walter, B., Wirtz, A. & Burkovski, A. Ammonium toxicity in bacteria. Curr. Microbiol. 52, 400–406 (2006).
Google Scholar
Hegde, S. et al. Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by Gluconacetobacter persimmonis. J. Bioprocess Biotechnol. 4, 1À5 (2013).
Lin, S. P. et al. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr. Polym. 151, 827–833 (2016).
Google Scholar
Iguchi, M., Yamanaka, S. & Budhiono, A. Bacterial cellulose—A masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000).
Google Scholar
Bielecki, S., Krystynowicz, A., Turkiewicz, M. & Kalinowska, H. Bacterial cellulose. Biopolymer 5, 31–84 (2005).
Raiszadeh-Jahromi, Y., Rezazadeh-Bari, M., Almasi, H. & Amiri, S. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J. Food Sci. Technol. 57, 2524–2533 (2020).
Google Scholar
Rastogi, A. & Banerjee, R. Statistical optimization of bacterial cellulose production by Leifsonia soli and its physico-chemical characterization. Process Biochem. 91, 297–302 (2020).
Google Scholar
Sumardee, N. J., Mohd-Hairul, A. & Mortan, S. In IOP Conference Series: Materials Science and Engineering. 012054 (IOP Publishing).
Abouelkheir, S. S. et al. Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: A comparative study. Sci. Rep. 10, 1–14 (2020).
Jacek, P., da Silva, F. A. S., Dourado, F., Bielecki, S. & Gama, M. Optimization and characterization of bacterial nanocellulose produced by Komagataeibacter rhaeticus K3. Carbohydr. Polym. Technol. Appl. 2, 100022 (2021).
Bilgi, E., Bayir, E., Sendemir-Urkmez, A. & Hames, E. E. Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. Int. J. Biol. Macromol. 90, 2–10 (2016).
Google Scholar
Zeng, X., Small, D. P. & Wan, W. Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr. Polym. 85, 506–513 (2011).
Google Scholar
Chiaoprakobkij, N., Sanchavanakit, N., Subbalekha, K., Pavasant, P. & Phisalaphong, M. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr. Polym. 85, 548–553 (2011).
Google Scholar
Fan, X. et al. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr. Polym. 151, 1068–1072 (2016).
Google Scholar
Rozenberga, L. et al. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria. Carbohydr. Polym. 144, 33–40 (2016).
Google Scholar
Kirdponpattara, S., Khamkeaw, A., Sanchavanakit, N., Pavasant, P. & Phisalaphong, M. Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr. Polym. 132, 146–155 (2015).
Google Scholar
Yan, Z., Chen, S., Wang, H., Wang, B. & Jiang, J. Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr. Polym. 74, 659–665 (2008).
Google Scholar
Bakhsheshi-Rad, H. et al. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym. Test. 82, 106298 (2020).
Google Scholar
Choi, S. C. et al. Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents. J. Biomed. Mater. Res. Part A 103, 3072–3080 (2015).
Google Scholar
Portela, R., Leal, C., Almeida, P. & Sobral, R. (2019).
Shao, W. et al. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr. Polym. 132, 351–358 (2015).
Google Scholar
Barzic, A. I. & Ioan, S. Antibacterial Drugs—From Basic Concepts to Complex Therapeutic Mechanisms of Polymer Systems Vol. 2015 (IntechOpen, 2015).
Gromovykh, T. et al. Bacterial cellulose synthesized by Gluconacetobacter hansenii for medical applications. Appl. Biochem. Microbiol. 53, 60–67 (2017).
Google Scholar
Wei, B., Yang, G. & Hong, F. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr. Polym. 84, 533–538 (2011).
Google Scholar
Sulaeva, I. et al. Fabrication of bacterial cellulose-based wound dressings with improved performance by impregnation with alginate. Mater. Sci. Eng. C 110, 110619 (2020).
Google Scholar
Yang, G., Yao, Y. & Wang, C. Green synthesis of silver nanoparticles impregnated bacterial cellulose-alginate composite film with improved properties. Mater. Lett. 209, 11–14 (2017).
Google Scholar
Wichai, S., Chuysinuan, P., Chaiarwut, S., Ekabutr, P. & Supaphol, P. Development of bacterial cellulose/alginate/chitosan composites incorporating copper (II) sulfate as an antibacterial wound dressing. J. Drug Deliv. Sci. Technol. 51, 662–671 (2019).
Google Scholar
Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58, 345 (1954).
Google Scholar
Miller, S., Dykes, D. & Polesky, H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215 (1988).
Google Scholar
Mullis, K. et al. In Cold Spring Harbor Symp. Quant. Biol. 263–273 (Cold Spring Harbor Laboratory Press).
Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74, 5463–5467 (1977).
Google Scholar
Hall, T. A. In Nucleic acids symposium series. 95–98 (Information Retrieval Ltd., c1979-c2000.).
Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).
Google Scholar
Hsieh, J.-T., Wang, M.-J., Lai, J.-T. & Liu, H.-S. A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J. Taiwan Inst. Chem. Eng. 63, 46–51 (2016).
Google Scholar
Lee, C. M., Gu, J., Kafle, K., Catchmark, J. & Kim, S. H. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density. Carbohydr. Polym. 133, 270–276 (2015).
Google Scholar
Mohammadkazemi, F., Azin, M. & Ashori, A. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 117, 518–523 (2015).
Google Scholar
Hanmoungjai, W., Chukeatirote, E., Pathom-aree, W., Yamada, Y. & Lumyoung, S. Identification of acidotolerant acetic acid bacteria isolated from Thailand sources. Res. J. Microbiol. 2, 194–197 (2007).
Google Scholar
Box, G. E. & Behnken, D. W. Some new three level designs for the study of quantitative variables. Technometrics 2, 455–475 (1960).
Google Scholar
Tripathi, R. M., Pudake, R. N., Shrivastav, B. & Shrivastav, A. Antibacterial activity of poly (vinyl alcohol)—biogenic silver nanocomposite film for food packaging material. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 025020 (2018).
Google Scholar
El-Shinnawy, N. A. Wound healing potency of bacterial cellulose membranes loaded with different antibiotics. Res. J. Pharm. Biol. Chem. Sci. 10, 360–376 (2019).
Google Scholar

