Preloader

Bioprocess development for bacterial cellulose biosynthesis by novel Lactiplantibacillus plantarum isolate along with characterization and antimicrobial assessment of fabricated membrane

  • 1.

    Klemm, D., Heublein, B., Fink, H. P. & Bohn, A. Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005).

    CAS 

    Google Scholar 

  • 2.

    Lynd, L. R., Weimer, P. J., Van Zyl, W. H. & Pretorius, I. S. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol. Mol. Biol. Rev. 66, 506–577 (2002).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 3.

    Santos, R. A. C. et al. Draft genome sequence of Komagataeibacter rhaeticus strain AF1, a high producer of cellulose, isolated from Kombucha tea. Genome Announc. 2, e00731-14 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Huang, et al. Recent advances in bacterial cellulose. Cellulose 21, 1–30 (2014).

    Google Scholar 

  • 5.

    Du, R., Zhao, F., Peng, Q., Zhou, Z. & Han, Y. Production and characterization of bacterial cellulose produced by Gluconacetobacter xylinus isolated from Chinese persimmon vinegar. Carbohydr. Polym. 194, 200–207 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Dubey, S. et al. From rotten grapes to industrial exploitation: Komagataeibacter europaeus SGP37, a micro-factory for macroscale production of bacterial nanocellulose. Int J Bio Macromol 96, 52–60 (2017).

    CAS 

    Google Scholar 

  • 7.

    Brown, A. J. XIX.—The chemical action of pure cultivations of bacterium aceti. J. Chem. Soc. Trans. 49, 172–187 (1886).

    CAS 

    Google Scholar 

  • 8.

    Stroescu, M., Isopencu, G., Busuioc, C. & Stoica-Guzun, A. Cellulose-Based Superabsorbent Hydrogels 1–36 (Springer, 2018).

    Google Scholar 

  • 9.

    Gadim, T. D. et al. Nanostructured bacterial cellulose–poly (4-styrene sulfonic acid) composite membranes with high storage modulus and protonic conductivity. ACS Appl. Mater. Interfaces. 6, 7864–7875 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Brandes, R. et al. Spherical bacterial cellulose/TiO2 nanocomposite with potential application in contaminants removal from wastewater by photocatalysis. Fibers Polym. 19, 1861–1868 (2018).

    CAS 

    Google Scholar 

  • 11.

    Savitskaya, I., Shokatayeva, D., Kistaubayeva, A., Ignatova, L. & Digel, I. Antimicrobial and wound healing properties of a bacterial cellulose based material containing B. subtilis cells. Heliyon 5, e02592 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Pacheco, G. et al. Bacterial cellulose skin masks—Properties and sensory tests. J. Cosmet. Dermatol 17, 840–847 (2018).

    PubMed 

    Google Scholar 

  • 13.

    Perugini, P., Bleve, M., Cortinovis, F. & Colpani, A. Biocellulose masks as delivery systems: A novel methodological approach to assure quality and safety. Cosmetics 5, 66 (2018).

    CAS 

    Google Scholar 

  • 14.

    Chiaoprakobkij, N., Seetabhawang, S., Sanchavanakit, N. & Phisalaphong, M. Fabrication and characterization of novel bacterial cellulose/alginate/gelatin biocomposite film. J. Biomater. Sci. Polym. Ed. 30, 961–982 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Novikov, I. V. et al. Green approach for fabrication of bacterial cellulose-chitosan composites in the solutions of carbonic acid under high pressure CO2. Carbohydr Polym 258, 117614 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Numata, Y., Kono, H., Tsuji, M. & Tajima, K. Structural and mechanical characterization of bacterial cellulose–polyethylene glycol diacrylate composite gels. Carbohydr. Polym. 173, 67–76 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Unal, S. et al. Production and characterization of bacterial cellulose scaffold and its modification with hyaluronic acid and gelatin for glioblastoma cell culture. Cellulose 28, 117–132 (2021).

    CAS 

    Google Scholar 

  • 18.

    Costa, A., Rocha, M. A. V. & Sarubbo, L. Bacterial cellulose: An ecofriendly biotextile. Int. J. Text. Fashion Technol. 7, 11–26 (2017).

    Google Scholar 

  • 19.

    Wang, J., Tavakoli, J. & Tang, Y. Bacterial cellulose production, properties and applications with different culture methods—A review. Carbohydr. Polym. 219, 63–76 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Islam, M. U., Ullah, M. W., Khan, S., Shah, N. & Park, J. K. Strategies for cost-effective and enhanced production of bacterial cellulose. Int. J. Biol. Macromol. 102, 1166–1173 (2017).

    PubMed 

    Google Scholar 

  • 21.

    Shah, N., Ul-Islam, M., Khattak, W. A. & Park, J. K. Overview of bacterial cellulose composites: A multipurpose advanced material. Carbohydr. Polym. 98, 1585–1598 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Saleh, A. K. et al. Statistical optimization and characterization of a biocellulose produced by local Egyptian isolate Komagataeibacter hansenii AS. 5. Int. J. Biol. Macromol. 144, 198–207 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Meza-Contreras, J. C., Manriquez-Gonzalez, R., Gutiérrez-Ortega, J. A. & Gonzalez-Garcia, Y. XRD and solid state 13C-NMR evaluation of the crystallinity enhancement of 13C-labeled bacterial cellulose biosynthesized by Komagataeibacter xylinus under different stimuli: A comparative strategy of analyses. Carbohydr. Res. 461, 51–59 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Hur, D. H. et al. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene. Biochem. Eng. J. 156, 107527 (2020).

    CAS 

    Google Scholar 

  • 25.

    Naloka, K., Matsushita, K. & Theeragool, G. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU 12. Int. J. Biol. Macromol. 150, 1113–1120 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Khan, H., Kadam, A. & Dutt, D. Studies on bacterial cellulose produced by a novel strain of Lactobacillus genus. Carbohydr. Polym. 229, 115513 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Seto, A. et al. Effective cellulose production by a coculture of Gluconacetobacter xylinus and Lactobacillus mali. Appl. Microbiol. Biotechnol. 73, 915–921 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Bagewadi, Z. K., Bhavikatti, J. S., Muddapur, U. M., Yaraguppi, D. A. & Mulla, S. I. Statistical optimization and characterization of bacterial cellulose produced by isolated thermophilic Bacillus licheniformis strain ZBT2. Carbohydr. Res. 491, 107979 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Zhu, H., Zhang, Y., Wang, J., Li, Y. & Lin, W. Advances in Applied Biotechnology 109–119 (Springer, 2015).

    Google Scholar 

  • 30.

    Rastogi, A. & Banerjee, R. Production and characterization of cellulose from Leifsonia sp. Process Biochem. 85, 35–42 (2019).

    CAS 

    Google Scholar 

  • 31.

    Velmurugan, P. et al. Production and characterization of bacterial cellulose by Leifsonia sp. CBNU-EW3 isolated from the earthworm, Eisenia fetida. Biotechnol. Bioprocess Eng. 20, 410–416 (2015).

    CAS 

    Google Scholar 

  • 32.

    Tanskul, S., Amornthatree, K. & Jaturonlak, N. A new cellulose-producing bacterium, Rhodococcus sp. MI 2: Screening and optimization of culture conditions. Carbohydr. Polym. 92, 421–428 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 33.

    Khera, A. S. et al. Evaluation of culture requirements for cellulose production by Egyptian local isolate alongside reference strain gluconaceto-bacter hansenii ATCC 23769. Pak. J. Biotechnol. 16, 69–80 (2019).

    Google Scholar 

  • 34.

    Zahan, K. A. et al. Effect of incubation temperature on growth of Acetobacter xylinum 0416 and bacterial cellulose production. In Appl Mech Mater, Vol 815 (2015).

  • 35.

    Bıyık, H. & Çoban, E. P. Evaluation of different carbon, nitrogen sources and industrial wastes for bacterial cellulose production. Evaluation 5, 74–80 (2017).

    Google Scholar 

  • 36.

    Ramírez, C. et al. Effect of different carbon sources on bacterial nanocellulose production and structure using the low pH resistant strain Komagataeibacter medellinensis. Materials 10, 639 (2017).

    ADS 

    Google Scholar 

  • 37.

    Arockiasamy, S. & Banik, R. M. Optimization of gellan gum production by Sphingomonas paucimobilis ATCC 31461 with nonionic surfactants using central composite design. J. Biosci. Bioeng. 105, 204–210 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 38.

    Yatsyshyn, V. Y., Fedorovych, D. V. & Sibirny, A. A. Medium optimization for production of flavin mononucleotide by the recombinant strain of the yeast Candida famata using statistical designs. Biochem. Eng. J. 49, 52–60 (2010).

    CAS 

    Google Scholar 

  • 39.

    Bae, S. & Shoda, M. Statistical optimization of culture conditions for bacterial cellulose production using Box-Behnken design. Biotechnol. Bioeng. 90, 20–28 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 40.

    Plackett, R. L. & Burman, J. P. The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946).

    MathSciNet 
    MATH 

    Google Scholar 

  • 41.

    Naveena, B., Altaf, M., Bhadriah, K. & Reddy, G. Selection of medium components by Plackett-Burman design for production of L (+) lactic acid by Lactobacillus amylophilus GV6 in SSF using wheat bran. Bioresour. Technol. 96, 485–490 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Farrag, A. A. et al. Biocellulose production by Gluconacetobacter hansenii ATCC 23769: Application of statistical experimental designs and cellulose membrane characterization. Egypt. J. Chem. 62, 2077–2092 (2019).

    Google Scholar 

  • 43.

    Aytekin, A. Ö., Demirbağ, D. D. & Bayrakdar, T. The statistical optimization of bacterial cellulose production via semi-continuous operation mode. J. Ind. Eng. Chem. 37, 243–250 (2016).

    CAS 

    Google Scholar 

  • 44.

    Park, J. K., Park, Y. H. & Jung, J. Y. Production of bacterial cellulose by Gluconacetobacter hansenii PJK isolated from rotten apple. Biotechnol. Bioprocess. Eng. 8, 83 (2003).

    CAS 

    Google Scholar 

  • 45.

    Hungund, B. S. & Gupta, S. Production of bacterial cellulose from Enterobacter amnigenus GH-1 isolated from rotten apple. World J. Microbiol. Biotechnol. 26, 1823–1828 (2010).

    CAS 

    Google Scholar 

  • 46.

    Jahan, F., Kumar, V., Rawat, G. & Saxena, R. Production of microbial cellulose by a bacterium isolated from fruit. Appl. Biochem. Biotechnol. 167, 1157–1171 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Fernandes, I. D. A. A. et al. Bacterial cellulose: From production optimization to new applications. Int. J. Biol. Macromol. 164, 2598–2611 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Jozala, A. F. et al. Bacterial nanocellulose production and application: A 10-year overview. Appl. Microbiol. Biotechnol. 100, 2063–2072 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 49.

    Aswini, K., Gopal, N. & Uthandi, S. Optimized culture conditions for bacterial cellulose production by Acetobacter senegalensis MA1. BMC Biotechnol. 20, 1–16 (2020).

    Google Scholar 

  • 50.

    Santoso, S. P. et al. Enhanced production of bacterial cellulose by Komactobacter intermedius using statistical modeling. Cellulose 27, 2497–2509 (2020).

    CAS 

    Google Scholar 

  • 51.

    Son, H. J., Heo, M. S., Kim, Y. G. & Lee, S. J. Optimization of fermentation conditions for the production of bacterial cellulose by a newly isolated Acetobacter. Biotechnol. Appl. Biochem. 33, 1–5 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Müller, T., Walter, B., Wirtz, A. & Burkovski, A. Ammonium toxicity in bacteria. Curr. Microbiol. 52, 400–406 (2006).

    PubMed 

    Google Scholar 

  • 53.

    Hegde, S. et al. Statistical optimization of medium components by response surface methodology for enhanced production of bacterial cellulose by Gluconacetobacter persimmonis. J. Bioprocess Biotechnol. 4, 1À5 (2013).

    Google Scholar 

  • 54.

    Lin, S. P. et al. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice. Carbohydr. Polym. 151, 827–833 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Iguchi, M., Yamanaka, S. & Budhiono, A. Bacterial cellulose—A masterpiece of nature’s arts. J. Mater. Sci. 35, 261–270 (2000).

    ADS 
    CAS 

    Google Scholar 

  • 56.

    Bielecki, S., Krystynowicz, A., Turkiewicz, M. & Kalinowska, H. Bacterial cellulose. Biopolymer 5, 31–84 (2005).

    Google Scholar 

  • 57.

    Raiszadeh-Jahromi, Y., Rezazadeh-Bari, M., Almasi, H. & Amiri, S. Optimization of bacterial cellulose production by Komagataeibacter xylinus PTCC 1734 in a low-cost medium using optimal combined design. J. Food Sci. Technol. 57, 2524–2533 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Rastogi, A. & Banerjee, R. Statistical optimization of bacterial cellulose production by Leifsonia soli and its physico-chemical characterization. Process Biochem. 91, 297–302 (2020).

    CAS 

    Google Scholar 

  • 59.

    Sumardee, N. J., Mohd-Hairul, A. & Mortan, S. In IOP Conference Series: Materials Science and Engineering. 012054 (IOP Publishing).

  • 60.

    Abouelkheir, S. S. et al. Novel research on nanocellulose production by a marine Bacillus velezensis strain SMR: A comparative study. Sci. Rep. 10, 1–14 (2020).

    Google Scholar 

  • 61.

    Jacek, P., da Silva, F. A. S., Dourado, F., Bielecki, S. & Gama, M. Optimization and characterization of bacterial nanocellulose produced by Komagataeibacter rhaeticus K3. Carbohydr. Polym. Technol. Appl. 2, 100022 (2021).

    Google Scholar 

  • 62.

    Bilgi, E., Bayir, E., Sendemir-Urkmez, A. & Hames, E. E. Optimization of bacterial cellulose production by Gluconacetobacter xylinus using carob and haricot bean. Int. J. Biol. Macromol. 90, 2–10 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Zeng, X., Small, D. P. & Wan, W. Statistical optimization of culture conditions for bacterial cellulose production by Acetobacter xylinum BPR 2001 from maple syrup. Carbohydr. Polym. 85, 506–513 (2011).

    CAS 

    Google Scholar 

  • 64.

    Chiaoprakobkij, N., Sanchavanakit, N., Subbalekha, K., Pavasant, P. & Phisalaphong, M. Characterization and biocompatibility of bacterial cellulose/alginate composite sponges with human keratinocytes and gingival fibroblasts. Carbohydr. Polym. 85, 548–553 (2011).

    CAS 

    Google Scholar 

  • 65.

    Fan, X. et al. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus. Carbohydr. Polym. 151, 1068–1072 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 66.

    Rozenberga, L. et al. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria. Carbohydr. Polym. 144, 33–40 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 67.

    Kirdponpattara, S., Khamkeaw, A., Sanchavanakit, N., Pavasant, P. & Phisalaphong, M. Structural modification and characterization of bacterial cellulose–alginate composite scaffolds for tissue engineering. Carbohydr. Polym. 132, 146–155 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Yan, Z., Chen, S., Wang, H., Wang, B. & Jiang, J. Biosynthesis of bacterial cellulose/multi-walled carbon nanotubes in agitated culture. Carbohydr. Polym. 74, 659–665 (2008).

    CAS 

    Google Scholar 

  • 69.

    Bakhsheshi-Rad, H. et al. In vitro and in vivo evaluation of chitosan-alginate/gentamicin wound dressing nanofibrous with high antibacterial performance. Polym. Test. 82, 106298 (2020).

    CAS 

    Google Scholar 

  • 70.

    Choi, S. C. et al. Modulation of biomechanical properties of hyaluronic acid hydrogels by crosslinking agents. J. Biomed. Mater. Res. Part A 103, 3072–3080 (2015).

    CAS 

    Google Scholar 

  • 71.

    Portela, R., Leal, C., Almeida, P. & Sobral, R. (2019).

  • 72.

    Shao, W. et al. Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property. Carbohydr. Polym. 132, 351–358 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 73.

    Barzic, A. I. & Ioan, S. Antibacterial Drugs—From Basic Concepts to Complex Therapeutic Mechanisms of Polymer Systems Vol. 2015 (IntechOpen, 2015).

    Google Scholar 

  • 74.

    Gromovykh, T. et al. Bacterial cellulose synthesized by Gluconacetobacter hansenii for medical applications. Appl. Biochem. Microbiol. 53, 60–67 (2017).

    CAS 

    Google Scholar 

  • 75.

    Wei, B., Yang, G. & Hong, F. Preparation and evaluation of a kind of bacterial cellulose dry films with antibacterial properties. Carbohydr. Polym. 84, 533–538 (2011).

    CAS 

    Google Scholar 

  • 76.

    Sulaeva, I. et al. Fabrication of bacterial cellulose-based wound dressings with improved performance by impregnation with alginate. Mater. Sci. Eng. C 110, 110619 (2020).

    CAS 

    Google Scholar 

  • 77.

    Yang, G., Yao, Y. & Wang, C. Green synthesis of silver nanoparticles impregnated bacterial cellulose-alginate composite film with improved properties. Mater. Lett. 209, 11–14 (2017).

    CAS 

    Google Scholar 

  • 78.

    Wichai, S., Chuysinuan, P., Chaiarwut, S., Ekabutr, P. & Supaphol, P. Development of bacterial cellulose/alginate/chitosan composites incorporating copper (II) sulfate as an antibacterial wound dressing. J. Drug Deliv. Sci. Technol. 51, 662–671 (2019).

    CAS 

    Google Scholar 

  • 79.

    Hestrin, S. & Schramm, M. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochem. J. 58, 345 (1954).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Miller, S., Dykes, D. & Polesky, H. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215 (1988).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Mullis, K. et al. In Cold Spring Harbor Symp. Quant. Biol. 263–273 (Cold Spring Harbor Laboratory Press).

  • 82.

    Sanger, F., Nicklen, S. & Coulson, A. R. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74, 5463–5467 (1977).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Hall, T. A. In Nucleic acids symposium series. 95–98 (Information Retrieval Ltd., c1979-c2000.).

  • 84.

    Tamura, K., Dudley, J., Nei, M. & Kumar, S. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 85.

    Hsieh, J.-T., Wang, M.-J., Lai, J.-T. & Liu, H.-S. A novel static cultivation of bacterial cellulose production by intermittent feeding strategy. J. Taiwan Inst. Chem. Eng. 63, 46–51 (2016).

    CAS 

    Google Scholar 

  • 86.

    Lee, C. M., Gu, J., Kafle, K., Catchmark, J. & Kim, S. H. Cellulose produced by Gluconacetobacter xylinus strains ATCC 53524 and ATCC 23768: Pellicle formation, post-synthesis aggregation and fiber density. Carbohydr. Polym. 133, 270–276 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 87.

    Mohammadkazemi, F., Azin, M. & Ashori, A. Production of bacterial cellulose using different carbon sources and culture media. Carbohydr. Polym. 117, 518–523 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 88.

    Hanmoungjai, W., Chukeatirote, E., Pathom-aree, W., Yamada, Y. & Lumyoung, S. Identification of acidotolerant acetic acid bacteria isolated from Thailand sources. Res. J. Microbiol. 2, 194–197 (2007).

    CAS 

    Google Scholar 

  • 89.

    Box, G. E. & Behnken, D. W. Some new three level designs for the study of quantitative variables. Technometrics 2, 455–475 (1960).

    MathSciNet 

    Google Scholar 

  • 90.

    Tripathi, R. M., Pudake, R. N., Shrivastav, B. & Shrivastav, A. Antibacterial activity of poly (vinyl alcohol)—biogenic silver nanocomposite film for food packaging material. Adv. Nat. Sci. Nanosci. Nanotechnol. 9, 025020 (2018).

    ADS 

    Google Scholar 

  • 91.

    El-Shinnawy, N. A. Wound healing potency of bacterial cellulose membranes loaded with different antibiotics. Res. J. Pharm. Biol. Chem. Sci. 10, 360–376 (2019).

    CAS 

    Google Scholar 

  • Source link