Preloader

Complement C5aR/LPS-induced BDNF and NGF modulation in human dental pulp stem cells

  • 1.

    Jiang, L., Jones, S. & Jia, X. Stem cell transplantation for peripheral nerve regeneration: Current options and opportunities. Int. J. Mol. Sci. 18, 94 (2017).

    PubMed Central 

    Google Scholar 

  • 2.

    Kaukua, N. et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature 513, 551–554 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Arthur, A., Rychkov, G., Shi, S., Koblar, S. A. & Gronthos, S. Adult human dental pulp stem cells differentiate toward functionally active neurons under appropriate environmental cues. Stem cells 26, 1787–1795 (2008).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Kadar, K. et al. Differentiation potential of stem cells from human dental origin-promise for tissue engineering. J. Physiol. Pharmacol. 60, 167–175 (2009).

    PubMed 

    Google Scholar 

  • 5.

    Song, M., Lee, J.-H., Bae, J., Bu, Y. & Kim, E.-C. Human dental pulp stem cells are more effective than human bone marrow-derived mesenchymal stem cells in cerebral ischemic injury. Cell Transplant. 26, 1001–1016 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 6.

    Yamagata, M. et al. Human dental pulp-derived stem cells protect against hypoxic-ischemic brain injury in neonatal mice. Stroke 44, 551–554 (2013).

    PubMed 

    Google Scholar 

  • 7.

    Bathina, S. & Das, U. N. Brain-derived neurotrophic factor and its clinical implications. Arch. Med. Sci. 11, 1164–1178 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 8.

    Deng, P. et al. Engineered BDNF producing cells as a potential treatment for neurologic disease. Expert Opin Biol. Ther. 16, 1025–1033 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 9.

    Pagella, P. et al. Human dental pulp stem cells exhibit enhanced properties in comparison to human bone marrow stem cells on neurites outgrowth. FASEB J. 34, 5499–5511 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Chmilewsky, F., About, I. & Chung, S.-H. Pulp fibroblasts control nerve regeneration through complement activation. J. Dent. Res. 95, 913–922 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Chmilewsky, F., About, I., Cooper, L. F. & Chung, S. H. C5L2 silencing in human pulp fibroblasts enhances nerve outgrowth under lipoteichoic acid stimulation. J. Endod. 44, 1396–1401 (2018).

    PubMed 

    Google Scholar 

  • 12.

    Chmilewsky, F., Ayaz, W., Appiah, J., About, I. & Chung, S.-H. Nerve growth factor secretion from pulp fibroblasts is modulated by complement C5a receptor and implied in neurite outgrowth. Sci. Rep. 6, 1–10 (2016).

    Google Scholar 

  • 13.

    Chmilewsky, F. et al. C5L2 regulates DMP1 expression during odontoblastic differentiation. J. Dent. Res. 98, 597–604 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 14.

    Pasiewicz, R. et al. C5a complement receptor modulates odontogenic dental pulp stem cell differentiation under hypoxia. Connect. Tissue Res. https://doi.org/10.1080/03008207.2021.1924696 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 15.

    Cheng, W. et al. p38 MAP kinase-mediated odontogenic differentiation of dental pulp stem cells. Int. J. Regen. Med. https://doi.org/10.31487/j.RGM.2020.02.03 (2020).

    Article 

    Google Scholar 

  • 16.

    Esmaeili, A., Alifarja, S., Nourbakhsh, N. & Talebi, A. Messenger RNA expression patterns of neurotrophins during transdifferentiation of stem cells from human-exfoliated deciduous teeth into neural-like cells. Avicenna J. Med. Biotechnol. 6, 21 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Mead, B., Logan, A., Berry, M., Leadbeater, W. & Scheven, B. A. Paracrine-mediated neuroprotection and neuritogenesis of axotomised retinal ganglion cells by human dental pulp stem cells: comparison with human bone marrow and adipose-derived mesenchymal stem cells. PLoS ONE 9, e109305 (2014).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Chmilewsky, F., About, I. & Chung, S. C5L2 receptor represses brain-derived neurotrophic factor secretion in lipoteichoic acid-stimulated pulp fibroblasts. J. Dent. Res. 96, 92–99 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Cavaillon, J.-M. Exotoxins and endotoxins: Inducers of inflammatory cytokines. Toxicon 149, 45–53 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Gao, H. & Yan, C. New insights for C5a and C5a receptors in sepsis. Front. Immunol. 3, 368 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 21.

    Yan, C., Zhu, M., Staiger, J., Johnson, P. F. & Gao, H. C5a-regulated CCAAT/enhancer-binding proteins β and δ are essential in Fcγ receptor-mediated inflammatory cytokine and chemokine production in macrophages. J. Biol. Chem. 287, 3217–3230 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Cavaillon, J. M., Fitting, C. & Haeffner-Cavaillon, N. Recombinant C5a enhances interleukin 1 and tumor necrosis factor release by lipopolysaccharide-stimulated monocytes and macrophages. Eur. J. Immunol. 20, 253–257 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 23.

    Karaöz, E. et al. Human dental pulp stem cells demonstrate better neural and epithelial stem cell properties than bone marrow-derived mesenchymal stem cells. Histochem. Cell Biol. 136, 455–473 (2011).

    PubMed 

    Google Scholar 

  • 24.

    Kawashima, N. Characterisation of dental pulp stem cells: A new horizon for tissue regeneration?. Arch. Oral Biol. 57, 1439–1458 (2012).

    PubMed 

    Google Scholar 

  • 25.

    Xiao, L. & Tsutsui, T. Human dental mesenchymal stem cells and neural regeneration. Hum. Cell 26, 91–96 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Nosrat, C. A., Fried, K., Ebendal, T. & Olson, L. Ngf, Bdnf, Nt3, Nt4 and Gdnf in tooth development. Eur. J. Oral Sci. 106, 94–99 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    Sasaki, R., Watanabe, Y., Yamato, M. & Okamoto, T. Tissue-engineered nerve guides with mesenchymal stem cells in the facial nerve regeneration. Neurochem. Int. 105062 (2021).

  • 28.

    Lynch, N. J. et al. L-ficolin specifically binds to lipoteichoic acid, a cell wall constituent of Gram-positive bacteria, and activates the lectin pathway of complement. J. Immunol. 172, 1198–1202 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Moosig, F. et al. Reduced expression of C1q-mRNA in monocytes from patients with systemic lupus erythematosus. Clin. Exp. Immunol. 146, 409–416 (2006).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 30.

    Ricklin, D., Hajishengallis, G., Yang, K. & Lambris, J. D. Complement: a key system for immune surveillance and homeostasis. Nat. Immunol. 11, 785–797 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 31.

    Mastellos, D., Papadimitriou, J. C., Franchini, S., Tsonis, P. A. & Lambris, J. D. A novel role of complement: Mice deficient in the fifth component of complement (C5) exhibit impaired liver regeneration. J. Immunol. 166, 2479–2486 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Ignatius, A. et al. Complement C3a and C5a modulate osteoclast formation and inflammatory response of osteoblasts in synergism with IL-1β. J. Cell. Biochem. 112, 2594–2605 (2011).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 33.

    Lara-Astiaso, D. et al. Complement anaphylatoxins C3a and C5a induce a failing regenerative program in cardiac resident cells. Evidence of a role for cardiac resident stem cells other than cardiomyocyte renewal. Springerplus 1, 1–15 (2012).

    Google Scholar 

  • 34.

    Bergmann, M., Jeanneau, C., Giraud, T. & Richard, G. Complement activation links inflammation to dental tissue regeneration. Clin. Oral Investig. https://doi.org/10.1007/s00784-020-03621-w (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 35.

    Liu, H., Li, D., Zhang, Y. & Li, M. Inflammation, mesenchymal stem cells and bone regeneration. Histochem. Cell Biol. 149, 393–404 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 36.

    Fitzgerald, M., Chiego, D. Jr. & Heys, D. Autoradiographic analysis of odontoblast replacement following pulp exposure in primate teeth. Arch. Oral Biol. 35, 707–715 (1990).

    CAS 
    PubMed 

    Google Scholar 

  • 37.

    Klos, A. et al. The role of the anaphylatoxins in health and disease. Mol. Immunol. 46, 2753–2766 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Téclès, O. et al. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch. Oral Biol. 50, 103–108 (2005).

    PubMed 

    Google Scholar 

  • 39.

    Monk, P. N., Scola, A. M., Madala, P. & Fairlie, D. P. Function, structure and therapeutic potential of complement C5a receptors. Br. J. Pharmacol. 152, 429–448 (2007).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 40.

    Laursen, N. S., Magnani, F., Gottfredsen, R. H., Petersen, S. V. & Andersen, G. R. Structure, function and control of complement C5 and its proteolytic fragments. Curr. Mol. Med. 12, 1083–1097 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Chmilewsky, F., Jeanneau, C., Laurent, P. & About, I. Pulp fibroblasts synthesize functional complement proteins involved in initiating dentin–pulp regeneration. Am. J. Pathol. 184, 1991–2000 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Chmilewsky, F., Jeanneau, C., Laurent, P., Kirschfink, M. & About, I. Pulp progenitor cell recruitment is selectively guided by a C5a gradient. J. Dent. Res. 92, 532–539 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Tirino, V. et al. Methods for the identification, characterization and banking of human DPSCs: Current strategies and perspectives. Stem Cell Rev. Rep. 7, 608–615 (2011).

    PubMed 

    Google Scholar 

  • 44.

    Mori, G. et al. Dental pulp stem cells: Osteogenic differentiation and gene expression. Ann. N. Y. Acad. Sci. 1237, 47–52 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Paduano, F., Marrelli, M., White, L. J., Shakesheff, K. M. & Tatullo, M. Odontogenic differentiation of human dental pulp stem cells on hydrogel scaffolds derived from decellularized bone extracellular matrix and collagen type I. PLoS ONE 11, e0148225 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Xiao, L. & Nasu, M. From regenerative dentistry to regenerative medicine: Progress, challenges, and potential applications of oral stem cells. Stem Cells Cloning Adv. Appl. 7, 89 (2014).

    CAS 

    Google Scholar 

  • 47.

    Giuliani, A. et al. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: Biological and clinical implications. Stem Cells Transl. Med. 2, 316–324 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 48.

    Paino, F. et al. Human DPSCs fabricate vascularized woven bone tissue: a new tool in bone tissue engineering. Clin. Sci. 131, 699–713 (2017).

    CAS 

    Google Scholar 

  • 49.

    Yamada, Y., Nakamura-Yamada, S., Kusano, K. & Baba, S. Clinical potential and current progress of dental pulp stem cells for various systemic diseases in regenerative medicine: A concise review. Int. J. Mol. Sci. 20, 1132 (2019).

    CAS 
    PubMed Central 

    Google Scholar 

  • 50.

    Xiao, L., Ide, R., Saiki, C., Kumazawa, Y. & Okamura, H. Human dental pulp cells differentiate toward neuronal cells and promote neuroregeneration in adult organotypic hippocampal slices in vitro. Int. J. Mol. Sci. 18, 1745 (2017).

    PubMed Central 

    Google Scholar 

  • 51.

    Ishizaka, R. et al. Stimulation of angiogenesis, neurogenesis and regeneration by side population cells from dental pulp. Biomaterials 34, 1888–1897 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Yang, S. et al. Self-assembling peptide hydrogels functionalized with LN-and BDNF-mimicking epitopes synergistically enhance peripheral nerve regeneration. Theranostics 10, 8227 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Widgerow, A. D., Salibian, A. A., Lalezari, S. & Evans, G. R. Neuromodulatory nerve regeneration: Adipose tissue-derived stem cells and neurotrophic mediation in peripheral nerve regeneration. J. Neurosci. Res. 91, 1517–1524 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Kingham, P. J., Kolar, M. K., Novikova, L. N., Novikov, L. N. & Wiberg, M. Stimulating the neurotrophic and angiogenic properties of human adipose-derived stem cells enhances nerve repair. Stem Cells Dev. 23, 741–754 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Cen, L. P. et al. Human periodontal ligament-derived stem cells promote retinal ganglion cell survival and axon regeneration after optic nerve injury. Stem Cells 36, 844–855 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 56.

    Huang, C.-W. et al. The differentiation stage of transplanted stem cells modulates nerve regeneration. Sci. Rep. 7, 1–12 (2017).

    ADS 

    Google Scholar 

  • Source link