Preloader

Capture-C: a modular and flexible approach for high-resolution chromosome conformation capture

  • 1.

    Dekker, J., Rippe, K., Dekker, M. & Kleckner, N. Capturing chromosome conformation. Science 295, 1306–1311 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 2.

    Brant, L. et al. Exploiting native forces to capture chromosome conformation in mammalian cell nuclei. Mol. Syst. Biol. 12, 1–8 (2016).

    Google Scholar 

  • 3.

    Rao, S. S. P. et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 159, 1665–1680 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 4.

    Hughes, J. R. et al. Analysis of hundreds of cis-regulatory landscapes at high resolution in a single, high-throughput experiment. Nat. Genet. 46, 205–212 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Davies, J. O. J. et al. Multiplexed analysis of chromosome conformation at vastly improved sensitivity. Nat. Methods 13, 74–80 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Van De Werken, H. J. G. et al. Robust 4C-seq data analysis to screen for regulatory DNA interactions. Nat. Methods 9, 969–972 (2012).

    PubMed 

    Google Scholar 

  • 7.

    Mifsud, B. et al. Mapping long-range promoter contacts in human cells with high-resolution capture Hi-C. Nat. Genet. 47, 598–606 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Madsen, J. G. S. et al. Highly interconnected enhancer communities control lineage-determining genes in human mesenchymal stem cells. Nat. Genet. 52, 1227–1238 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Oudelaar, A. M., Davies, J. O. J., Downes, D. J., Higgs, D. R. & Hughes, J. R. Robust detection of chromosomal interactions from small numbers of cells using low-input Capture-C. Nucleic Acids Res. 45, (2017).

  • 10.

    Downes, D. J. et al. High-resolution targeted 3C interrogation of cis-regulatory element organization at genome-wide scale. Nat. Commun. 12, 531 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 11.

    Oudelaar, A. M. et al. Single-allele chromatin interactions identify regulatory hubs in dynamic compartmentalized domains. Nat. Genet. 50, 1744–1751 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Oudelaar, A. M., Hughes, J. & Downes, D. Tri-C. Protoc. Exch. https://doi.org/10.21203/rs.2.1650/v2 (2019).

  • 13.

    Oudelaar, A. M. et al. Dynamics of the 4D genome during in vivo lineage specification and differentiation. Nat. Commun. 11, (2020).

  • 14.

    Golov, A. K. et al. A modified protocol of Capture-C allows affordable and flexible high-resolution promoter interactome analysis. Sci. Rep. 10, 1–15 (2020).

    Google Scholar 

  • 15.

    King, A. J. et al. Reactivation of a developmentally silenced embryonic globin gene. Nat. Commun. https://doi.org/10.1038/s41467-021-24402-3 (2021).

  • 16.

    Hay, D. et al. Genetic dissection of the α-globin super-enhancer in vivo. Nat. Genet. 48, 895–903 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 17.

    Simon, C. S. et al. Functional characterisation of cis-regulatory elements governing dynamic Eomes expression in the early mouse embryo. Development 144, 1249–1260 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 18.

    Schäfer, A. et al. Impaired DNA demethylation of C/EBP sites causes premature aging. Genes Dev. 32, 742–762 (2018).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Godfrey, L. et al. DOT1L inhibition reveals a distinct subset of enhancers dependent on H3K79 methylation. Nat. Commun. 10, 2803 (2019).

  • 20.

    Oudelaar, A. M. et al. A revised model for promoter competition based on multi-way chromatin interactions at the α-globin locus. Nat. Commun. https://doi.org/10.1038/s41467-019-13404-x (2019).

  • 21.

    Ghavi-Helm, Y. et al. Highly rearranged chromosomes reveal uncoupling between genome topology and gene expression. Nat. Genet. 51, 1272–1282 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 22.

    Williams, R. M. et al. Reconstruction of the global neural crest gene regulatory network in vivo. Dev. Cell 51, 255–276.e7 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 23.

    Larke, M. S. C. et al. Enhancers predominantly regulate gene expression during differentiation via transcription initiation. Mol. Cell 81, 983-997.e7 (2021).

  • 24.

    Blackledge, N. P. et al. PRC1 catalytic activity is central to polycomb system function. Mol. Cell 77, 857-874.e9 (2020).

  • 25.

    Rhodes, J. D. P. et al. Cohesin disrupts polycomb-dependent chromosome interactions in embryonic stem cells. Cell Rep. 30, 820–835 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 26.

    Furlan, G. et al. The Ftx noncoding locus controls X chromosome inactivation independently of its RNA products. Mol. Cell 70, 462–472 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 27.

    van Bemmel, J. G. et al. The bipartite TAD organization of the X-inactivation center ensures opposing developmental regulation of Tsix and Xist. Nat. Genet. 51, 1024–1034 (2019).

  • 28.

    Hanssen, L. L. P. et al. Tissue-specific CTCF–cohesin-mediated chromatin architecture delimits enhancer interactions and function in vivo. Nat. Cell Biol. 19, 952–961 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Hyle, J. et al. Acute depletion of CTCF directly affects MYC regulation through loss of enhancer–promoter looping. Nucleic Acids Res. 47, 6699–6713 (2019).

  • 30.

    Zhang, D. et al. Alteration of genome folding via contact domain boundary insertion. Nat. Genet. 52, 1076-1087 (2020).

  • 31.

    Harrold, C. L. et al. A functional overlap between actively transcribed genes and chromatin boundary elements. Preprint at bioRxiv https://doi.org/10.1101/2020.07.01.182089 (2020).

  • 32.

    Downes, D. J. et al. An integrated platform to systematically identify causal variants and genes for polygenic human traits. Preprint at bioRxiv https://doi.org/10.1101/813618 (2019).

  • 33.

    Thurner, M. et al. Integration of human pancreatic islet genomic data refines regulatory mechanisms at Type 2 diabetes susceptibility loci. eLife 7, e31977 (2018).

  • 34.

    Chesi, A. et al. Genome-scale Capture C promoter interactions implicate effector genes at GWAS loci for bone mineral density. Nat. Commun. 10, 1260 (2019).

  • 35.

    Badat, M. et al. A remarkable case of HbH disease illustrates the relative contributions of the α-globin enhancers to gene expression. Blood https://doi.org/10.1182/blood.2020006680 (2020).

  • 36.

    Long, H. K. et al. Loss of extreme long-range enhancers in human neural crest drives a craniofacial disorder. Cell Stem Cell 27, 765–783.e14 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 37.

    Olijnik, A. A. et al. Genetic and functional insights into CDA-I prevalence and pathogenesis. J. Med. Genet. https://doi.org/10.1136/jmedgenet-2020-106880 (2020).

  • 38.

    Bozhilov, Y. K. et al. A gain-of-function single nucleotide variant creates a new promoter which acts as an orientation-dependent enhancer–blocker. Nat. Commun. 12, 3806 (2021).

  • 39.

    Schwessinger, R. et al. DeepC: predicting 3D genome folding using megabase-scale transfer learning. Nat. Methods https://doi.org/10.1038/s41592-020-0960-3 (2020).

  • 40.

    Brown, J. M. et al. A tissue-specific self-interacting chromatin domain forms independently of enhancer–promoter interactions. Nat. Commun. 9, 3849 (2018).

  • 41.

    Chiariello, A. M. et al. A dynamic folded hairpin conformation is associated with α-globin activation in erythroid cells. Cell Rep. 30, 2125–2135.e5 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Zhao, Z. et al. Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions. Nat. Genet. 38, 1341–1347 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Simonis, M. et al. Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture–on-chip (4C). Nat. Genet. 38, 1348–1354 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 44.

    Hagege, H. et al. Quantitative analysis of chromosome conformation capture assays (3C-qPCR). Nat. Protoc. 2, 1722–1733 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 45.

    Schwartzman, O. et al. UMI-4C for quantitative and targeted chromosomal contact profiling. Nat. Methods 13, 685–691 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 46.

    Davies, J. O. J., Oudelaar, A. M., Higgs, D. R. & Hughes, J. R. How best to identify chromosomal interactions: a comparison of approaches. Nat. Methods 14, 125–134 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    Schoenfelder, S. et al. The pluripotent regulatory circuitry connecting promoters to their long-range interacting elements. Genome Res. 25, 582–597 (2015).

  • 48.

    Hsieh, T. H. S. et al. Mapping nucleosome resolution chromosome folding in yeast by Micro-C. Cell 162, 108–119 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Hsieh, T. H. S., Fudenberg, G., Goloborodko, A. & Rando, O. J. Micro-C XL: assaying chromosome conformation from the nucleosome to the entire genome. Nat. Methods 13, 1009–1011 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Ma, W. et al. Fine-scale chromatin interaction maps reveal the cis-regulatory landscape of human lincRNA genes. Nat. Methods 12, 71–78 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Hua, P. et al. Defining genome architecture at base-pair resolution. Nature https://doi.org/10.1038/s41586-021-03639-4 (2021).

  • 52.

    Li, G. et al. Chromatin interaction analysis with paired-end tag (ChIA-PET) sequencing technology and application. BMC Genomics 15, S11 (2014).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Fang, R. et al. Mapping of long-range chromatin interactions by proximity ligation-assisted ChIP-seq. Cell Res. 26, 1345–1348 (2016).

  • 54.

    Zheng, M. et al. Multiplex chromatin interactions with single-molecule precision. Nature 566, 558–562 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat. Methods 13, 919–922 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Mumbach, M. R. et al. HiChIRP reveals RNA-associated chromosome conformation. Nat. Methods 16, 489–492 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Dostie, J. et al. Chromosome Conformation Capture Carbon Copy (5C): a massively parallel solution for mapping interactions between genomic elements. Genome Res. 16, 1299–1309 (2006).

  • 58.

    Kolovos, P. et al. Targeted chromatin capture (T2C): a novel high resolution high throughput method to detect genomic interactions and regulatory elements. Epigenetics Chromatin 7, 10 (2014).

  • 59.

    Dryden, N. H. et al. Unbiased analysis of potential targets of breast cancer susceptibility loci by Capture Hi-C. Genome Res. 24, 1854–1868 (2014).

  • 60.

    Sanborn, A. L. et al. Chromatin extrusion explains key features of loop and domain formation in wild-type and engineered genomes. Proc. Natl Acad. Sci. USA 112, E6456–E6465 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Aljahani, A. et al. Analysis of sub-kilobase chromatin topology reveals nano-scale regulatory interactions with variable dependence on cohesin and CTCF. Preprint at bioRxiv https://doi.org/10.1101/2021.08.10.455796 (2021).

  • 62.

    Olivares-Chauvet, P. et al. Capturing pairwise and multi-way chromosomal conformations using chromosomal walks. Nature 540, 296–300 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 63.

    Allahyar, A. et al. Enhancer hubs and loop collisions identified from single-allele topologies. Nat. Genet. 50, 1151–1160 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 64.

    Vermeulen, C. et al. Multi-contact 4C: long-molecule sequencing of complex proximity ligation products to uncover local cooperative and competitive chromatin topologies. Nat. Protoc. 15, 364–397 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Beagrie, R. A. et al. Multiplex-GAM: genome-wide identification of chromatin contacts yields insights not captured by Hi-C. Preprint at bioRxiv https://doi.org/10.1101/2020.07.31.230284 (2020).

  • 66.

    Beagrie, R. A. et al. Complex multi-enhancer contacts captured by genome architecture mapping. Nature 543, 519–524 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 67.

    Quinodoz, S. A. et al. Higher-order inter-chromosomal hubs shape 3D genome organization in the nucleus. Cell 174, 744–757.e24 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Takei, Y. et al. Integrated spatial genomics reveals global architecture of single nuclei. Nature 590, 344–350 (2021).

  • 69.

    Tan, L., Xing, D., Chang, C. H., Li, H. & Xie, X. S. Three-dimensional genome structures of single diploid human cells. Science 361, 924–928 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Nagano, T. et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure. Nature 502, 59–64 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 71.

    Nagano, T. et al. Cell-cycle dynamics of chromosomal organization at single-cell resolution. Nature 547, 61–67 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Ramani, V. et al. Massively multiplex single-cell Hi-C. Nat. Methods 14, 263–266 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Stevens, T. J. et al. 3D structures of individual mammalian genomes studied by single-cell Hi-C. Nature 544, 59–64 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Flyamer, I. M. et al. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature 544, 110–114 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Telenius, J. M. et al. CaptureCompendium: a comprehensive toolkit for 3C analysis. Preprint at bioRxiv https://doi.org/10.1101/2020.02.17.952572 (2020).

  • 76.

    Anil, A., Spalinskas, R., Åkerborg, Ö. & Sahlén, P. HiCapTools: a software suite for probe design and proximity detection for targeted chromosome conformation capture applications. Bioinformatics 34, 675–677 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Hansen, P. et al. GOPHER: Generator Of probes for capture Hi-C experiments at high resolution. BMC Genomics 20, 40 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 78.

    Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

  • 79.

    Smit, A., Hubley, R. & Green, P. RepeatMasker Open-4.0 (2015).

  • 80.

    Eijsbouts, C. Q., Burren, O. S., Newcombe, P. J. & Wallace, C. Fine mapping chromatin contacts in capture Hi-C data. BMC Genomics 20, 77 (2019).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Geeven, G., Teunissen, H., De Laat, W. & De Wit, E. peakC: a flexible, non-parametric peak calling package for 4C and Capture-C data. Nucleic Acids Res. 46, e91 (2018).

  • 82.

    Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 1–21 (2014).

    Google Scholar 

  • 83.

    Wang, Y. et al. The 3D Genome Browser: a web-based browser for visualizing 3D genome organization and long-range chromatin interactions. Genome Biol. https://doi.org/10.1101/112268 (2018).

  • 84.

    Kerpedjiev, P. et al. HiGlass: web-based visual exploration and analysis of genome interaction maps. Genome Biol. https://doi.org/10.1101/121889 (2018).

  • 85.

    Servant, N. et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome https://doi.org/10.1186/s13059-015-0831-x (2015).

  • 86.

    Buckle, A., Gilbert, N., Marenduzzo, D. & Brackley, C. A. capC-MAP: software for analysis of Capture-C data. Bioinformatics https://doi.org/10.1093/bioinformatics/btz480 (2019).

  • 87.

    Cairns, J. et al. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data. Genome Biol. 17, 127 (2016).

  • 88.

    Thongjuea, S., Stadhouders, R., Grosveld, F. G., Soler, E. & Lenhard, B. R3Cseq: an R/Bioconductor package for the discovery of long-range genomic interactions from chromosome conformation capture and next-generation sequencing data. Nucleic Acids Res. 41, e132 (2013).

  • 89.

    Klein, F. A. et al. FourCSeq: analysis of 4C sequencing data. Bioinformatics 31, 3085–3091 (2015).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 90.

    Freire-Pritchett, P. et al. Detecting chromosomal interactions in Capture Hi-C data with CHiCAGO and companion tools. Nat. Protoc. 16, 4144–4176 (2021).

  • 91.

    Smith, A. L., Rue-Albrecht, K. & Sims, D. CapCruncher. Zenodo https://doi.org/10.5281/zenodo.5113088 (2021).

  • 92.

    Brandão, H. B., Gabriele, M. & Hansen, A. S. Tracking and interpreting long-range chromatin interactions with super-resolution live-cell imaging. Curr. Opin. Cell Biol. 70, 18–26 (2021).

    PubMed 

    Google Scholar 

  • 93.

    Lakadamyali, M. & Cosma, M. P. Visualizing the genome in high resolution challenges our textbook understanding. Nat. Methods 17, 371–379 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 94.

    Kempfer, R. & Pombo, A. Methods for mapping 3D chromosome architecture. Nat. Rev. Genet. 21, 207–226 (2020).

    CAS 
    PubMed 

    Google Scholar 

  • 95.

    Shaban, H. A. & Seeber, A. Monitoring the spatio-temporal organization and dynamics of the genome. Nucleic Acids Res. 48, 3423–3434 (2020).

  • 96.

    Beecham, A. H. et al. Analysis of immune-related loci identifies 48 new susceptibility variants for multiple sclerosis. Nat. Genet. 45, 1353–1360 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Boettiger, A. & Murphy, S. Advances in chromatin imaging at kilobase-scale resolution. Trends Genet 36, 273–287 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 98.

    Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10, 1213–1218 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Boyle, A. P. et al. High-resolution mapping and characterization of open chromatin across the genome. Cell 132, 311–322 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 100.

    Oudelaar, A. M., Downes, D., Davies, J. & Hughes, J. Low-input Capture-C: a chromosome conformation capture assay to analyze chromatin architecture in small numbers of cells. Bio Protoc. 7, e2645 (2017).

  • Source link