Preloader

Hard polymeric porous microneedles on stretchable substrate for transdermal drug delivery

  • 1.

    Gross, J. & Kelly, J. G. Intradermal drug delivery device and method for intradermal delivery of drugs. U.S. Patent Application No. 5,848,991 (1998).

  • 2.

    Jang, K. K. Skin perforating device for transdermal medication. U.S. Patent Application No. 5,611,806 (1997).

  • 3.

    Henry, S., McAllister, D. V., Allen, M. G. & Prausnitz, M. R. Microfabricated microneedles: A novel approach to transdermal drug delivery. J. Pharm. Sci. 87, 922–925 (1998).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Prausnitz, M. R. Microneedles for transdermal drug delivery. Adv. Drug Deliv. Rev. 56, 581–587 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 5.

    Guy, R. H. et al. (eds) Transdermal Drug Delivery : Developmental Issues and Research Initiatives (Dekker, 1989).

    Google Scholar 

  • 6.

    Smith, E. W. & Maibach, H. I. Percutaneous Penetration Enhancers. Percutaneous Penetration Enhancers (CRC Press, Boca Raton, 1995).

    Google Scholar 

  • 7.

    Amsden, B. G. & Goosen, M. F. A. Transdermal delivery of peptide and protein drugs: An overview. AIChE J. 41, 1972–1997 (1995).

    CAS 

    Google Scholar 

  • 8.

    Jamaledin, R. et al. Advances in antimicrobial microneedle patches for combating infections. Adv. Mater. 32, 2002129 (2020).

    CAS 

    Google Scholar 

  • 9.

    Teymourian, H., Tehrani, F., Mahato, K. & Wang, J. Lab under the Skin: Microneedle based wearable devices. Adv. Healthc. Mater. 10, 2002255 (2021).

    CAS 

    Google Scholar 

  • 10.

    Long, Y., Li, J., Yang, F., Wang, J. & Wang, X. Wearable and implantable electroceuticals for therapeutic electrostimulations. Adv. Sci. 8, 2004023 (2021).

    CAS 

    Google Scholar 

  • 11.

    Wang, H., Pastorin, G. & Lee, C. Toward self-powered wearable adhesive skin patch with bendable microneedle array for transdermal drug delivery. Adv. Sci. 3, 1–10 (2016).

    Google Scholar 

  • 12.

    Park, J. H., Allen, M. G. & Prausnitz, M. R. Biodegradable polymer microneedles: Fabrication, mechanics and transdermal drug delivery. J. Control. Release 104, 51–66 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Yoon, Y. K., Park, J. H. & Allen, M. G. Multidirectional UV lithography for complex 3-D MEMS structures. J. Microelectromech. Syst. 15, 1121–1130 (2006).

    Google Scholar 

  • 14.

    Park, J. H., Yoon, Y. K., Choi, S. O., Prausnitz, M. R. & Allen, M. G. Tapered conical polymer microneedles fabricated using an integrated lens technique for transdermal drug delivery. IEEE Trans. Biomed. Eng. 54, 903–913 (2007).

    PubMed 

    Google Scholar 

  • 15.

    Lin, T. H., Chao, C. K. & Hung, S. Y. A novel fabrication method of micro-needle mold by using the micro-lens mask through contact printing. Microsyst. Technol. 21, 1843–1848 (2015).

    CAS 

    Google Scholar 

  • 16.

    Kim, K. et al. A tapered hollow metallic microneedle array using backside exposure of SU-8. J. Micromech. Microeng. 14, 597–603 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 17.

    Han, M. et al. A novel fabrication process for out-of-plane microneedle sheets of biocompatible polymer. J. Micromech. Microeng. 17, 1184–1191 (2007).

    ADS 
    CAS 

    Google Scholar 

  • 18.

    Takahashi, H. et al. Scalable fabrication of microneedle arrays via spatially controlled UV exposure. Microsyst. Nanoeng. 2, 1–9 (2016).

    Google Scholar 

  • 19.

    Lee, K., Lee, H. C., Lee, D. S. & Jung, H. Drawing lithography: Three-dimensional fabrication of an ultrahigh-aspect-ratio microneedle. Adv. Mater. 22, 483–486 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Kim, J., Paik, S. J., Wang, P. C., Kim, S. H. & Allen, M. G. Maskless fabrication of high aspect ratio structures by combination of micromolding and direct drawing. In Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems (MEMS) 280–283 (2011).

  • 21.

    Xiang, Z. et al. Dense vertical SU-8 microneedles drawn from a heated mold with precisely controlled volume. J. Micromech. Microeng. 25, 025013 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 22.

    Sugiyama, S., Khumpuang, S. & Kawaguchi, G. Plain-pattern to cross-section transfer (PCT) technique for deep x-ray lithography and applications. J. Micromech. Microeng. 14, 1399–1404 (2004).

    ADS 
    CAS 

    Google Scholar 

  • 23.

    Moon, S. J., Lee, S. S., Lee, H. S. & Kwon, T. H. Fabrication of microneedle array using LIGA and hot embossing process. Microsyst. Technol. 11, 311–318 (2005).

    CAS 

    Google Scholar 

  • 24.

    Demir, Y. K., Akan, Z. & Kerimoglu, O. Characterization of polymeric microneedle arrays for transdermal drug delivery. PLoS ONE 8, e77289 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Bediz, B. et al. Dissolvable microneedle arrays for intradermal delivery of biologics: Fabrication and application. Pharm. Res. 31, 117–135 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Griss, P. & Stemme, G. Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J. Microelectromech. Syst. 12, 296–301 (2003).

    Google Scholar 

  • 27.

    Gardeniers, H. J. G. E. et al. Silicon micromachined hollow microneedles for transdermal liquid transport. J. Microelectromech. Syst. 12, 855–862 (2003).

    Google Scholar 

  • 28.

    Stoeber, B. & Liepmann, D. Arrays of hollow out-of-plane microneedles for drug delivery. J. Microelectromech. Syst. 14, 472–479 (2005).

    Google Scholar 

  • 29.

    Roxhed, N., Griss, P. & Stemme, G. A method for tapered deep reactive ion etching using a modified Bosch process. J. Micromech. Microeng. 17, 1087–1092 (2007).

    ADS 

    Google Scholar 

  • 30.

    Tang, Y., Sandoughsaz, A., Owen, K. J. & Najafi, K. Ultra deep reactive ion etching of high aspect-ratio and thick silicon using a ramped-parameter process. J. Microelectromech. Syst. 27, 686–697 (2018).

    CAS 

    Google Scholar 

  • 31.

    Li, Y. et al. Fabrication of sharp silicon hollow microneedles by deep-reactive ion etching towards minimally invasive diagnostics. Microsyst. Nanoeng. 5, 1–11 (2019).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 32.

    Wilke, N., Mulcahy, A., Ye, S. R. & Morrissey, A. Process optimization and characterization of silicon microneedles fabricated by wet etch technology. Microelectronics J. 36, 650–656 (2005).

    CAS 

    Google Scholar 

  • 33.

    Omatsu, T. et al. Metal microneedle fabrication using twisted light with spin. Opt. Express 18, 17967 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 34.

    Nejad, H. R., Sadeqi, A., Kiaee, G. & Sonkusale, S. Low-cost and cleanroom-free fabrication of microneedles. Microsyst. Nanoeng. 4, 1–7 (2018).

    Google Scholar 

  • 35.

    Rezaei Nejad, H., Sadeqi, A. & Sonkusale, S. System and Method for Making Microneedles. U.S. Patent Application No. 16/756,407 (2020).

  • 36.

    Sadeqi, A., Nejad, H. R., Kiaee, G. & Sonkusale, S. Cost-effective fabrication of chitosan microneedles for transdermal drug delivery. In Conference Proceedings of 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) 5737–5740 (2018).

  • 37.

    Rad, Z. F. et al. High-fidelity replication of thermoplastic microneedles with open microfluidic channels. Microsyst. Nanoeng. 3, 1–11 (2017).

    MathSciNet 

    Google Scholar 

  • 38.

    Trautmann, A., Roth, G. L., Nujiqi, B., Walther, T. & Hellmann, R. Towards a versatile point-of-care system combining femtosecond laser generated microfluidic channels and direct laser written microneedle arrays. Microsyst. Nanoeng. 5, 1–9 (2019).

    ADS 
    CAS 

    Google Scholar 

  • 39.

    Krieger, K. J. et al. Simple and customizable method for fabrication of high-aspect ratio microneedle molds using low-cost 3D printing. Microsyst. Nanoeng. 5, 1–14 (2019).

    MathSciNet 

    Google Scholar 

  • 40.

    Kaur, M., Ita, K. B., Popova, I. E., Parikh, S. J. & Bair, D. A. Microneedle-assisted delivery of verapamil hydrochloride and amlodipine besylate. Eur. J. Pharm. Biopharm. 86, 284–291 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 41.

    Wang, P. M., Cornwell, M., Hill, J. & Prausnitz, M. R. Precise microinjection into skin using hollow microneedles. J. Invest. Dermatol. 126, 1080–1087 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Schipper, P. et al. Repeated fractional intradermal dosing of an inactivated polio vaccine by a single hollow microneedle leads to superior immune responses. J. Control. Release 242, 141–147 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 43.

    Lee, J. W., Park, J. H. & Prausnitz, M. R. Dissolving microneedles for transdermal drug delivery. Biomaterials 29, 2113–2124 (2008).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Zeng, Y., Zhou, H., Ding, J. & Zhou, W. Cell membrane inspired nano-shell enabling long-acting Glucose Oxidase for Melanoma starvation therapy via microneedles-based percutaneous delivery. Theranostics 11, 8270–8282 (2021).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Liu, A. et al. Nitric oxide nanomotor driving exosomes-loaded microneedles for achilles tendinopathy healing. ACS Nano 15, 13339–13350 (2021).

    CAS 

    Google Scholar 

  • 46.

    Lim, J., Tahk, D., Yu, J., Min, D. H. & Jeon, N. L. Design rules for a tunable merged-tip microneedle. Microsyst. Nanoeng. 4, 1–10 (2018).

    ADS 
    CAS 

    Google Scholar 

  • 47.

    Shirkhanzadeh, M. Microneedles coated with porous calcium phosphate ceramics: Effective vehicles for transdermal delivery of solid trehalose. J. Mater. Sci. Mater. Med. 16, 37–45 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 48.

    Ji, J., Tay, F. E. H., Miao, J. & Iliescu, C. Microfabricated microneedle with porous tip for drug delivery. J. Micromech. Microeng. 16, 958–964 (2006).

    ADS 
    CAS 

    Google Scholar 

  • 49.

    Park, J. H. et al. Polymer particle-based micromolding to fabricate novel microstructures. Biomed. Microdevices 9, 223–234 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 50.

    Bystrova, S. & Luttge, R. Micromolding for ceramic microneedle arrays. Microelectron. Eng. 88, 1681–1684 (2011).

    CAS 

    Google Scholar 

  • 51.

    Verhoeven, M. et al. Applying ceramic nanoporous microneedle arrays as a transport interface in egg plants and an ex-vivo human skin model. Microelectron. Eng. 98, 659–662 (2012).

    CAS 

    Google Scholar 

  • 52.

    Cai, B., Xia, W., Bredenberg, S. & Engqvist, H. Self-setting bioceramic microscopic protrusions for transdermal drug delivery. J. Mater. Chem. B 2, 5992–5998 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 53.

    Van der Maaden, K. et al. Microneedle-based drug and vaccine delivery via nanoporous microneedle arrays. Drug Deliv. Transl. Res. 5, 397–406 (2015).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Cahill, E. M. et al. Metallic microneedles with interconnected porosity: A scalable platform for biosensing and drug delivery. Acta Biomater. 80, 401–411 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 55.

    Gill, H. S., Söderholm, J., Prausnitz, M. R. & Sällberg, M. Cutaneous vaccination using microneedles coated with hepatitis C DNA vaccine. Gene Ther. 17, 811–814 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    DeMuth, P. C. et al. Vaccine delivery with microneedle skin patches in nonhuman primates. Nat. Biotechnol. 31, 1082–1085 (2013).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 57.

    Demuth, P. C. et al. Polymer multilayer tattooing for enhanced DNA vaccination. Nat. Mater. 12, 367–376 (2013).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Zhang, Y. et al. Development of lidocaine-coated microneedle product for rapid, safe, and prolonged local analgesic action. Pharm. Res. 29, 170–177 (2012).

    PubMed 

    Google Scholar 

  • 59.

    Vrdoljak, A. et al. Coated microneedle arrays for transcutaneous delivery of live virus vaccines. J. Control. Release 159, 34–42 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 60.

    Lee, K., Lee, C. Y. & Jung, H. Dissolving microneedles for transdermal drug administration prepared by stepwise controlled drawing of maltose. Biomaterials 32, 3134–3140 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Miyano, T. et al. Sugar micro needles as transdermic drug delivery system. Biomed. Microdevices 7, 185–188 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Lee, Y. et al. Drug-delivery system based on salmon DNA nano- and micro-scale structures. Sci. Rep. 7, 1–10 (2017).

    ADS 

    Google Scholar 

  • 63.

    Donnelly, R. F. et al. Laser-engineered dissolving microneedle arrays for transdermal macromolecular drug delivery. Pharm. Res. 28, 1919–1930 (2011).

    PubMed 

    Google Scholar 

  • 64.

    Lahiji, S. F., Dangol, M. & Jung, H. A patchless dissolving microneedle delivery system enabling rapid and efficient transdermal drug delivery. Sci. Rep. 5, 1–7 (2015).

    Google Scholar 

  • 65.

    Sullivan, S. P. et al. Dissolving polymer microneedle patches for influenza vaccination. Nat. Med. 16, 915–920 (2010).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 66.

    Scholten, D., Stumber, M., Laermer, F. & Feyh, A. Manufacturing Method For A Porous Microneedle Array And Corresponding Porous Microneedle Array And Corresponding Substrate Composite. U.S. Patent Application No. 8,986,256 (2011).

  • 67.

    Prausnitz, M. R., Allen, M. G. & Gujral, I. Microneedle Device for Extraction and Sensing of Bodily Fluids. U.S. Patent Application No. 7,344,499 (2008).

  • 68.

    Todd, S. & Middleton, I. Microneedle Device for Removal of Bodily Fluid. GB1313133.9A (2012).

  • 69.

    Allen, M., Prausnitz, M., McAllister, D. & Cros, F. Microneedle Devices and Methods of Manufacture and Use Thereof. U.S. Patent Application No. 10/010,723 (2002).

  • 70.

    Shirkhanzadeh M. Arrays of microneedles comprising porous calcium phosphate coating and bioactive agents. WO/2003/092785 (2003).

  • 71.

    Lüttge, R., et al. Integrated Microneedle Array and a Method for Manufacturing Thereof. U.S. Patent Application No. 8,603,384 (2013).

  • 72.

    Humrez, L., Ramos, M., Al-Jumaily, A., Petchu, M. & Ingram, J. Synthesis and characterisation of porous polymer microneedles. J. Polym. Res. 18, 1043–1052 (2011).

    CAS 

    Google Scholar 

  • 73.

    Medhi, P. et al. Lidocaine-loaded fish scale-nanocellulose biopolymer composite microneedles. AAPS PharmSciTech 18, 1488–1494 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 74.

    Manoukian, M. A. C., Migdal, C. W., Tembhekar, A. R., Harris, J. A. & DeMesa, C. Topical administration of ibuprofen for injured athletes: Considerations, formulations, and comparison to oral delivery. Sport. Med. Open 3, 1–9 (2017).

    Google Scholar 

  • 75.

    Rowbotham, M. C., Davies, P. S. & Fields, H. L. Topical lidocaine gel relieves postherpetic neuralgia. Ann. Neurol. 37, 246–253 (1995).

    CAS 
    PubMed 

    Google Scholar 

  • 76.

    Ormandy, S. & Doyle, E. A comparison of EMLA cream and amethocaine gel for topical cutaneous analgesia in children. Acute Pain 1, 28–30 (1998).

    CAS 

    Google Scholar 

  • 77.

    Friedman, P. M., Mafong, E. A., Friedman, E. S. & Geronemus, R. G. Topical anesthetics update: EMLA and beyond. Dermatol. Surg. 27(12), 1019–1026 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Gupta, J., Denson, D. D., Felner, E. I. & Prausnitz, M. R. Rapid local anesthesia in humans using minimally invasive microneedles. Clin. J. Pain 28, 129–135 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 79.

    Lee, B. M. et al. Dissolving microneedles for rapid and painless local anesthesia. Pharmaceutics 12, 366 (2020).

    CAS 
    PubMed Central 

    Google Scholar 

  • 80.

    Choina, J. et al. Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst. Appl. Catal. B Environ. 129, 589–598 (2013).

    CAS 

    Google Scholar 

  • 81.

    Sánchez-Leija, R. J., Pojman, J. A., Luna-Bárcenas, G. & Mota-Morales, J. D. Controlled release of lidocaine hydrochloride from polymerized drug-based deep-eutectic solvents. J. Mater. Chem. B 2, 7495–7501 (2014).

    PubMed 

    Google Scholar 

  • 82.

    Kochhar, J. S. et al. Microneedle integrated transdermal patch for fast onset and sustained delivery of lidocaine. Mol. Pharm. 10, 4272–4280 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 83.

    Kamari, Y. & Ghiaci, M. Preparation and characterization of ibuprofen/modified chitosan/TiO2 hybrid composite as a controlled drug-delivery system. Microporous Mesoporous Mater. 234, 361–369 (2016).

    CAS 

    Google Scholar 

  • 84.

    Davis, S. P., Landis, B. J., Adams, Z. H., Allen, M. G. & Prausnitz, M. R. Insertion of microneedles into skin: Measurement and prediction of insertion force and needle fracture force. J. Biomech. 37, 1155–1163 (2004).

    PubMed 

    Google Scholar 

  • 85.

    Xue, P., Zhang, X., Chuah, Y. J., Wu, Y. & Kang, Y. Flexible PEGDA-based microneedle patches with detachable PVP-CD arrowheads for transdermal drug delivery. RSC Adv. 5, 75204–75209 (2015).

    ADS 
    CAS 

    Google Scholar 

  • 86.

    Gao, Y. et al. Transdermal delivery of therapeutics through dissolvable gelatin/sucrose films coated on PEGDA microneedle arrays with improved skin permeability. J. Mater. Chem. B 7, 7515–7524 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • Source link