Preloader

Pre-existing antibodies directed against a tetramerizing domain enhance the immune response against artificially stabilized soluble tetrameric influenza neuraminidase

  • 1.

    Matrosovich, M. N., Matrosovich, T. Y., Gray, T., Roberts, N. A. & Klenk, H.-D. Neuraminidase is important for the initiation of influenza virus infection in human airway epithelium. J. Virol. 78, 12665–12667 (2004).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Palese, P., Tobita, K., Ueda, M. & Compans, R. W. Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61, 397–410 (1974).

    CAS 
    Article 

    Google Scholar 

  • 3.

    de Vries, E., Du, W., Guo, H. & de Haan, C. A. M. Influenza A virus hemagglutinin-neuraminidase-receptor balance: preserving virus motility. Trends Microbiol. 28, 57–67 (2020).

    CAS 
    Article 

    Google Scholar 

  • 4.

    Couch, R. B. et al. Antibody correlates and predictors of immunity to naturally occurring influenza in humans and the importance of antibody to the neuraminidase. J. Infect. Dis. 207, 974–981 (2013).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Monto, A. S. et al. Antibody to influenza virus neuraminidase: an independent correlate of protection. J. Infect. Dis. 212, 1191–1199 (2015).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Ng, S. et al. Novel correlates of protection against pandemic H1N1 influenza A virus infection. Nat. Med. 25, 962–967 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Maier, H. E. et al. Pre-existing antineuraminidase antibodies are associated with shortened duration of influenza A(H1N1)pdm virus shedding and illness in naturally infected adults. Clin. Infect. Dis. 70, 2290–2297 (2020).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Weiss, C. D. et al. Neutralizing and neuraminidase antibodies correlate with protection against influenza during a late season A/H3N2 outbreak among unvaccinated military recruits. Clin. Infect. Dis. 71, 3096–3102 (2020).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Black, S. et al. Hemagglutination inhibition antibody titers as a correlate of protection for inactivated influenza Vaccines in children. Pediatr. Infect. Dis. J. 30, 1081–1085 (2011).

    Article 

    Google Scholar 

  • 10.

    Chen, Y. Q. et al. Influenza infection in humans induces broadly cross-reactive and protective neuraminidase-reactive antibodies. Cell 173, 417–429.e10 (2018).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Laguio-Vila, M. R. et al. Comparison of serum hemagglutinin and neuraminidase inhibition antibodies after 2010-2011 trivalent inactivated influenza vaccination in healthcare personnel. Open Forum Infect. Dis. 2, ofu115 (2015).

    Article 

    Google Scholar 

  • 12.

    Air, G. M. Influenza neuraminidase. Influenza Other Resp. Viruses 6, 245–256 (2012).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Yasuhara, A. et al. Antigenic drift originating from changes to the lateral surface of the neuraminidase head of influenza A virus. Nat. Microbiol. 4, 1024–1034 (2019).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Johansson, B. E., Matthews, J. T. & Kilbourne, E. D. Supplementation of conventional influenza A vaccine with purified viral neuraminidase results in a balanced and broadened immune response. Vaccine 16, 1009–1015 (1998).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Sultana, I. et al. Stability of neuraminidase in inactivated influenza vaccines. Vaccine 32, 2225–2230 (2014).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Deroo, T., Min Jou, W. & Fiers, W. Recombinant neuraminidase vaccine protects against lethal influenza. Vaccine 14, 561–569 (1996).

    CAS 
    Article 

    Google Scholar 

  • 17.

    McMahon, M. et al. Correctly folded – but not necessarily functional – influenza virus neuraminidase is required to induce protective antibody responses in mice. Vaccine 38, 7129–7137 (2020).

    CAS 
    Article 

    Google Scholar 

  • 18.

    von Grafenstein, S. et al. Interface dynamics explain assembly dependency of influenza neuraminidase catalytic activity. J. Biomol. Struct. Dyn. 33, 104–120 (2015).

    Article 

    Google Scholar 

  • 19.

    da Silva, D. V., Nordholm, J., Madjo, U., Pfeiffer, A. & Daniels, R. Assembly of subtype 1 influenza neuraminidase is driven by both the transmembrane and head domains. J. Biol. Chem. 288, 644–653 (2013).

    Article 

    Google Scholar 

  • 20.

    Dai, M. et al. Identification of residues that affect oligomerization and/or enzymatic activity of influenza virus H5N1 neuraminidase proteins. J. Virol. 90, 9457–9470 (2016).

    CAS 
    Article 

    Google Scholar 

  • 21.

    de Filette, M., Deroo, T. M., Fiers, W., Maras, M. & Min Jou, W. A. Oligomeric complexes of chimeric proteins with enhanced immunogenic potential. International application published under the patent cooperation treaty WO 02/074795 A2 (2002).

  • 22.

    Schmidt, P. M., Attwood, R. M., Mohr, P. G., Barrett, S. A. & McKimm-Breschkin, J. L. A generic system for the expression and purification of soluble and stable influenza neuraminidase. PLoS ONE 6, e16284 (2011).

    CAS 
    Article 

    Google Scholar 

  • 23.

    Stetefeld, J. et al. Crystal structure of a naturally occurring parallel right-handed coiled coil tetramer. Nat. Struct. Biol. 7, 772–776 (2000).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Gao, J. et al. Design of the recombinant influenza neuraminidase antigen is crucial for its biochemical properties and protective efficacy. J. Virol. 95, e0116021 (2021).

    Article 

    Google Scholar 

  • 25.

    Job, E. R. et al. Broadened immunity against influenza by vaccination with computationally designed influenza virus N1 neuraminidase constructs. npj Vaccines 3, 55 (2018).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Streltsov, V. A., Schmidt, P. M. & McKimm-Breschkin, J. L. Structure of an Influenza A virus N9 neuraminidase with a tetrabrachion-domain stalk. Acta Crystallogr. Sect. F. Struct. Biol. Commun. 75, 89–97 (2019).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Wernersson, S. et al. IgG-mediated enhancement of antibody responses is low in Fc receptor gamma chain-deficient mice and increased in Fc gamma RII-deficient mice. J. Immunol. 163, 618–622 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 28.

    Nimmerjahn, F. & Ravetch, J. V. Fcγ receptors as regulators of immune responses. Nat. Rev. Immunol. 8, 34–47 (2008).

    CAS 
    Article 

    Google Scholar 

  • 29.

    Heyman, B. Regulation of antibody responses via antibodies, complement, and Fc receptors. Annu. Rev. Immunol. 18, 709–737 (2000).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Verstrepen, B. E. et al. Vaccine-induced protection of rhesus macaques against plasma viremia after intradermal infection with a European lineage 1 strain of West Nile virus. PLoS ONE 9, e112568 (2014).

    Article 

    Google Scholar 

  • 31.

    Zarnitsyna, V. I. et al. Masking of antigenic epitopes by antibodies shapes the humoral immune response to influenza. Philos. Trans. R. Soc. B Biol. Sci. 370, 20140248. https://doi.org/10.1098/rstb.2014.0248 (2015).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Zarnitsyna, V. I., Lavine, J., Ellebedy, A., Ahmed, R. & Antia, R. Multi-epitope models explain how pre-existing antibodies affect the generation of broadly protective responses to influenza. PLoS Pathog. 12, e1005692 (2016).

    Article 

    Google Scholar 

  • 33.

    Heesters, B. A. et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity 38, 1164–1175 (2013).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Baker, K., Rath, T., Pyzik, M. & Blumberg, R. S. The role of FcRn in antigen presentation. Front. Immunol. https://doi.org/10.3389/fimmu.2014.00408 (2014).

  • 35.

    de Ståhl, T. D., Dahlström, J., Carroll, M. C. & Heyman, B. A role for complement in feedback enhancement of antibody responses by IgG3. J. Exp. Med. 197, 1183–1190 (2003).

    Article 

    Google Scholar 

  • 36.

    Kranich, J. & Krautler, N. J. How follicular dendritic cells shape the B-cell antigenome. Front. Immunol. 7, 225 (2016).

    Article 

    Google Scholar 

  • 37.

    Zhang, L., Ding, Z. & Heyman, B. IgG3-antigen complexes are deposited on follicular dendritic cells in the presence of C1q and C3. Sci. Rep. https://doi.org/10.1038/s41598-017-05704-3 (2017).

  • 38.

    Job, E. R. et al. Broadened immunity against influenza by vaccination with computationally designed influenza virus N1 neuraminidase constructs. npj Vaccines 3, 55 (2018).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Rossey, I. et al. Potent single-domain antibodies that arrest respiratory syncytial virus fusion protein in its prefusion state. Nat. Commun. 8, 16165 (2017).

  • 40.

    Caillet, C. et al. AF03-adjuvanted and non-adjuvanted pandemic influenza A (H1N1) 2009 vaccines induce strong antibody responses in seasonal influenza vaccine-primed and unprimed mice. Vaccine 28, 3076–3079 (2010).

    CAS 
    Article 

    Google Scholar 

  • Source link