Preloader

Long-term outcomes of lentiviral gene therapy for the β-hemoglobinopathies: the HGB-205 trial

  • 1.

    Cao, A. & Galanello, R. Beta-thalassemia. Genet. Med. 12, 61–76 (2010).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Pasricha, S. R. & Drakesmith, H. Hemoglobinopathies in the fetal position. N. Engl. J. Med. 379, 1675–1677 (2018).

    Article 

    Google Scholar 

  • 3.

    Shah, F. T., Sayani, F., Trompeter, S., Drasar, E. & Piga, A. Challenges of blood transfusions in β-thalassemia. Blood Rev. 37, 100588 (2019).

    Article 

    Google Scholar 

  • 4.

    Cappellini, M. D. et al. A phase 3 trial of luspatercept in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 382, 1219–1231 (2020).

    CAS 
    Article 

    Google Scholar 

  • 5.

    Niihara, Y. et al. A phase 3 trial of ʟ-glutamine in sickle cell disease. N. Engl. J. Med. 379, 226–235 (2018).

    CAS 
    Article 

    Google Scholar 

  • 6.

    Vichinsky, E. et al. A phase 3 randomized trial of voxelotor in sickle cell disease. N. Engl. J. Med. 381, 509–519 (2019).

    CAS 
    Article 

    Google Scholar 

  • 7.

    Ataga, K. I. et al. Crizanlizumab for the prevention of pain crises in sickle cell disease. N. Engl. J. Med. 376, 429–439 (2017).

    CAS 
    Article 

    Google Scholar 

  • 8.

    Bolanos-Meade, J. et al. HLA-haploidentical bone marrow transplantation with posttransplant cyclophosphamide expands the donor pool for patients with sickle cell disease. Blood 120, 4285–4291 (2012).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Magrin, E., Miccio, A. & Cavazzana, M. Lentiviral and genome-editing strategies for the treatment of β-hemoglobinopathies. Blood 134, 1203–1213 (2019).

    Article 

    Google Scholar 

  • 10.

    Imren, S. et al. Permanent and panerythroid correction of murine β thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc. Natl Acad. Sci. USA 99, 14380–14385 (2002).

    CAS 
    Article 

    Google Scholar 

  • 11.

    Pawliuk, R. et al. Correction of sickle cell disease in transgenic mouse models by gene therapy. Science 294, 2368–2371 (2001).

  • 12.

    Imren, S. et al. High-level β-globin expression and preferred intragenic integration after lentiviral transduction of human cord blood stem cells. J. Clin. Invest. 114, 953–962 (2004).

    CAS 
    Article 

    Google Scholar 

  • 13.

    Ronen, K. et al. Distribution of lentiviral vector integration sites in mice following therapeutic gene transfer to treat β-thalassemia. Mol. Ther. 19, 1273–1286 (2011).

    CAS 
    Article 

    Google Scholar 

  • 14.

    Negre, O. et al. Preclinical evaluation of efficacy and safety of an improved lentiviral vector for the treatment of β-thalassemia and sickle cell disease. Curr. Gene Ther. 15, 64–81 (2015).

    CAS 
    Article 

    Google Scholar 

  • 15.

    Takekoshi, K. J., Oh, Y. H., Westerman, K. W., London, I. M. & Leboulch, P. Retroviral transfer of a human beta-globin/delta-globin hybrid gene linked to beta locus control region hypersensitive site 2 aimed at the gene therapy of sickle cell disease. Proc. Natl Acad. Sci. USA 92, 3014–3018 (1995).

    CAS 
    Article 

    Google Scholar 

  • 16.

    Srinivasulu, S. et al. Pair-wise interactions of polymerization inhibitory contact site mutations of hemoglobin-S. Protein J. 25, 503–516 (2006).

    CAS 
    Article 

    Google Scholar 

  • 17.

    Cavazzana-Calvo, M. et al. Transfusion independence and HMGA2 activation after gene therapy of human β-thalassaemia. Nature 467, 318–322 (2010).

    CAS 
    Article 

    Google Scholar 

  • 18.

    Thompson, A. A. et al. Gene therapy in patients with transfusion-dependent β-thalassemia. N. Engl. J. Med. 378, 1479–1493 (2018).

    CAS 
    Article 

    Google Scholar 

  • 19.

    Ribeil, J. A. et al. Gene therapy in a patient with sickle cell disease. N. Engl. J. Med. 376, 848–855 (2017).

    CAS 
    Article 

    Google Scholar 

  • 20.

    Nagel, R. L. et al. Hematologically and genetically distinct forms of sickle cell anemia in Africa. The Senegal type and the Benin type. N. Engl. J. Med. 312, 880–884 (1985).

    CAS 
    Article 

    Google Scholar 

  • 21.

    Shannon, C. E. A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948). 623–656.

    Article 

    Google Scholar 

  • 22.

    Chao, A. Nonparametric estimation of the number of classes in a population. Scand. J. Stat. 11, 265–270 (1984).

    Google Scholar 

  • 23.

    Hebert, N. et al. Individual red blood cell fetal hemoglobin quantification allows to determine protective thresholds in sickle cell disease. Am. J. Hematol. 95, 1235–1245 (2020).

    CAS 
    Article 

    Google Scholar 

  • 24.

    Eaton, W. A., Hofrichter, J. & Ross, P. D. Editorial: Delay time of gelation: a possible determinant of clinical severity in sickle cell disease. Blood 47, 621–627 (1976).

    CAS 
    Article 

    Google Scholar 

  • 25.

    Imren, S. et al. Permanent and panerythroid correction of murine beta thalassemia by multiple lentiviral integration in hematopoietic stem cells. Proc. Natl Acad. Sci. USA 99, 14380–14385 (2002).

    CAS 
    Article 

    Google Scholar 

  • 26.

    Henry, E. R. et al. Allosteric control of hemoglobin S fiber formation by oxygen and its relation to the pathophysiology of sickle cell disease. Proc. Natl Acad. Sci. USA 117, 15018–15027 (2020).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Ilboudo, Y. et al. A common functional PIEZO1 deletion allele associates with red blood cell density in sickle cell disease patients. Am. J. Hematol. 93, E362–E365 (2018).

    Article 

    Google Scholar 

  • 28.

    Philippidis, A. After analysis, Bluebird Bio says vector ‘very unlikely’ cause of acute myeloid leukemia. Hum. Gene Ther. 32, 332–334 (2021).

    CAS 
    Article 

    Google Scholar 

  • 29.

    https://investor.bluebirdbio.com/news-releases/news-release-details/bluebird-bio-announces-lifting-fda-clinical-hold-sickle-cell (2021).

  • 30.

    Tisdale, J. F. et al. Updated results from HGB-206 LentiGlobin for Sickle Cell Disease Gene Therapy Study: Group C data and Group A AML case investigation. Abstract 196. American Society of Gene & Cell Therapy Annual Meeting (2021).

  • 31.

    Seminog, O. O., Ogunlaja, O. I., Yeates, D. & Goldacre, M. J. Risk of individual malignant neoplasms in patients with sickle cell disease: English national record linkage study. J. R. Soc. Med. 109, 303–309 (2016).

    Article 

    Google Scholar 

  • 32.

    Brunson, A. et al. Increased risk of leukemia among sickle cell disease patients in California. Blood 130, 1597–1599 (2017).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Jones, R. J. & DeBaun, M. R. Leukemia after gene therapy for sickle cell disease: insertional mutagenesis, busulfan, both, or neither. Blood 138, 942–947 (2021).

    CAS 
    Article 

    Google Scholar 

  • 34.

    Shimoni, A. et al. Secondary malignancies after allogeneic stem-cell transplantation in the era of reduced-intensity conditioning; the incidence is not reduced. Leukemia 27, 829–835 (2013).

    CAS 
    Article 

    Google Scholar 

  • 35.

    Thompson, A. A. et al. Resolution of serious vaso-occlusive pain crises and reduction in patient-reported pain intensity: results from the ongoing phase 1/2 HGB-206 group C study of lentiglobin for sickle cell disease (bb1111) gene therapy. https://ash.confex.com/ash/2020/webprogram/Paper134940.html (2020).

  • 36.

    Brusson, M. et al. Novel lentiviral vectors for gene therapy of sickle cell disease combining gene addition and gene silencing strategies. https://ash.confex.com/ash/2021/webprogram/Paper151076.html (2021).

  • 37.

    Thompson, A. A. et al. Favorable outcomes in pediatric patients in the phase 3 Hgb-207 (Northstar-2) and Hgb-212 (Northstar-3) studies of betibeglogene autotemcel gene therapy for the treatment of transfusion-dependent β-thalassemia. Blood 136, 52–54 (2020).

    Article 

    Google Scholar 

  • 38.

    Nualkaew, T. et al. Coordinated β-globin expression and α2-globin reduction in a multiplex lentiviral gene therapy vector for β-thalassemia. Mol. Ther. 29, 2841–2853 (2021).

  • Source link