Preloader

Oxidative stress alleviating potential of galactan exopolysaccharide from Weissella confusa KR780676 in yeast model system

  • 1.

    Blokhina, O., Virolainen, E. & Fagerstedt, K. V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 91(2), 179–194 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 2.

    Finkel, T. & Holbrook, N. J. Oxidants, oxidative stress and the biology of ageing. Nature 408(6809), 239 (2000).

    ADS 
    CAS 
    PubMed 

    Google Scholar 

  • 3.

    Seifried, H. E., Anderson, D. E., Fisher, E. I. & Milner, J. A. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 18(9), 567–579 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 4.

    Stief, T. W. The physiology and pharmacology of singlet oxygen. Med. Hypotheses. 60(4), 567–572 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 5.

    Valko, M. et al. Free radicals and antioxidants in normal physiological functions and human disease. Int. J. Biochem. Cell Biol. 39(1), 44–84 (2007).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Wickens, A. P. Ageing and the free radical theory. Respir. Physiol. 128(3), 379–391 (2001).

    CAS 
    PubMed 

    Google Scholar 

  • 7.

    Aruoma, O. I. Free radicals, antioxidants and international nutrition. Asia Pac. J. Clin. Nutr. 8(1), 53–63 (1999).

    CAS 
    PubMed 

    Google Scholar 

  • 8.

    Wade, C. R., Jackson, P. G., Highton, J. & van Rij, A. M. Lipid peroxidation and malondialdehyde in the synovial fluid and plasma of patients with rheumatoid arthritis. Clin. Chim. Acta. 164(3), 245–250 (1987).

    CAS 
    PubMed 

    Google Scholar 

  • 9.

    Ye, S., Liu, F., Wang, J., Wang, H. & Zhang, M. Antioxidant activities of an exopolysaccharide isolated and purified from marine Pseudomonas PF-6. Carbohydr. Polym. 87(1), 764–770 (2012).

    CAS 
    PubMed 

    Google Scholar 

  • 10.

    Liu, F., Ooi, V. E. C. & Chang, S. T. Free radical scavenging activities of mushroom polysaccharide extracts. Life Sci. 60(10), 763–771 (1997).

    CAS 
    PubMed 

    Google Scholar 

  • 11.

    Aruoma, O. I. Free radicals, oxidative stress, and antioxidants in human health and disease. J. Am. Oil Chem. Soc. 75(2), 199–212 (1998).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 12.

    Cai, L., Zou, S., Liang, D. & Luan, L. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophorae tonkinensis Radix. Carbohydr. Polym. 184, 354–365 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 13.

    Chanda, S. & Dave, R. In vitro models for antioxidant activity evaluation and some medicinal plants possessing antioxidant properties: An overview. Afr. J. Microbiol. Res. 3(13), 981–996 (2009).

    Google Scholar 

  • 14.

    Fan, J. et al. Antioxidant activities of the polysaccharides of Chuanminshen violaceum. Carbohydr. Polym. 157, 629–636 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 15.

    Huang, L. et al. Effect of high-pressure microfluidization treatment on the physicochemical properties and antioxidant activities of polysaccharide from Mesona chinensis Benth. Carbohydr. Polym. 200, 191–199 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 16.

    Li, C. et al. Flavonoid composition and antioxidant activity of tree peony (Paeonia section Moutan) yellow flowers. J. Agric. Food Chem. 57(18), 8496–8503 (2009).

    CAS 
    PubMed 

    Google Scholar 

  • 17.

    Maity, P. et al. Structural, immunological, and antioxidant studies of β-glucan from edible mushroom Entoloma lividoalbum. Carbohydr. Polym. 123, 350–358 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 18.

    Mau, J. L., Lin, H. C. & Chen, C. C. Antioxidant properties of several medicinal mushrooms. J. Agric. Food Chem. 50(21), 6072–6077 (2002).

    CAS 
    PubMed 

    Google Scholar 

  • 19.

    Nandi, A. K. et al. Antioxidant and immunostimulant β-glucan from edible mushroom Russula albonigra (Krombh.) Fr. Carbohydr. Polym. 99, 774–782 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 20.

    Patra, S. et al. heteroglycan from the mycelia of Pleurotus ostreatus: Structure determination and study of antioxidant properties. Carbohydr. Res. 368, 16–21 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 21.

    Sun, H., Mu, T., Xi, L. & Song, Z. Effects of domestic cooking methods on polyphenols and antioxidant activity of sweet potato leaves. J. Agric. Food Chem. 62(36), 8982–8989 (2014).

    CAS 
    PubMed 

    Google Scholar 

  • 22.

    Dilna, S. V. et al. Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF 4. LWT: Food Sci. Technol. 64(2), 1179–1186 (2015).

    CAS 

    Google Scholar 

  • 23.

    Saravanan, C., Kavitake, D., Kandasamy, S., Devi, P. B. & Shetty, P. H. Production, partial characterization and antioxidant properties of exopolysaccharide α-d-glucan produced by Leuconostoc lactis KC117496 isolated from an idli batter. J. Food Sci. Technol. 56(1), 159–166 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 24.

    Adebayo-Tayo, B., Ishola, R. & Oyewunmi, T. Characterization, antioxidant and immunomodulatory potential on exopolysaccharide produced by wild type and mutant Weissella confusa strains. Biotechnol. Rep. 19, e00271 (2018).

    Google Scholar 

  • 25.

    Adesulu-Dahunsi, A. T. et al. Extracellular polysaccharide from Weissella confusa OF126: Production, optimization, and characterization. Int. J. Biol. Macromol. 111, 514–525 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 26.

    Adesulu-Dahunsi, A. T., Sanni, A. I. & Jeyaram, K. Production, characterization and In vitro antioxidant activities of exopolysaccharide from Weissella cibaria GA44. LWT: Food Sci. Technol. 87, 432–442 (2018).

    CAS 

    Google Scholar 

  • 27.

    Benhouna, I. S. et al. Exopolysaccharide produced by Weissella confusa: Chemical characterisation, rheology and bioactivity. Int. Dairy J. 90, 88–94 (2019).

    CAS 

    Google Scholar 

  • 28.

    Ye, G., Chen, Y., Wang, C., Yang, R. & Bin, X. Purification and characterization of exopolysaccharide produced by Weissella cibaria YB-1 from pickle Chinese cabbage. Int. J. Biol. Macromol. 120, 1315–1321 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 29.

    Zhu, Y. et al. Purification, characterization and antioxidant activity of the exopolysaccharide from Weissella cibaria SJ14 isolated from Sichuan paocai. Int. J. Biol. Macromol. 115, 820–828 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 30.

    An, J. et al. In vitro antioxidant activities of Rhodobacter sphaeroides and protective effect on Caco-2 cell line model. Appl. Microbiol. Biotechnol. 103(2), 917–927 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 31.

    Wang, K. et al. Physicochemical characteristics and in vitro and in vivo antioxidant activity of a cell-bound exopolysaccharide produced by Lactobacillus fermentum S1. Int. J. Biol. Macromol. 139, 252–261 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 32.

    Święciło, A. et al. Application of growth tests employing a Δsod1 mutant of Saccharomyces cerevisiae to study the antioxidant activity of berry fruit extracts. LWT: Food Sci. Technol. 94, 96–102 (2018).

    Google Scholar 

  • 33.

    Liu, J. et al. In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 82(4), 1278–1283 (2010).

    CAS 

    Google Scholar 

  • 34.

    Gao, Y. et al. Antioxidant activity evaluation of dietary flavonoid hyperoside using Saccharomyces cerevisiae as a model. Molecules 24(4), 788 (2019).

    PubMed Central 

    Google Scholar 

  • 35.

    Li, H., Wang, L. & Luo, Y. Composition analysis by UPLC-PDA-ESI (−)-HRMS and antioxidant activity using saccharomyces cerevisiae model of herbal teas and green teas from Hainan. Molecules 23(10), 2550 (2018).

    PubMed Central 

    Google Scholar 

  • 36.

    Meng, D., Zhang, P., Li, S., Ho, C. T. & Zhao, H. Antioxidant activity evaluation of dietary phytochemicals using Saccharomyces cerevisiae as a model. J. Funct. Foods. 38, 36–44 (2017).

    CAS 

    Google Scholar 

  • 37.

    Subhaswaraj, P., Sowmya, M., Bhavana, V., Dyavaiah, M. & Siddhardha, B. Determination of antioxidant activity of Hibiscus sabdariffa and Croton caudatus in Saccharomyces cerevisiae model system. J. Food Sci. Technol. 54(9), 2728–2736 (2017).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 38.

    Kavitake, D., Devi, P. B., Singh, S. P. & Shetty, P. H. Characterization of a novel galactan produced by Weissella confusa KR780676 from an acidic fermented food. Int. J. Biol. Macromol. 86, 681–689 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 39.

    Sharma, S., Kandasamy, S., Kavitake, D. & Shetty, P. H. Probiotic characterization and antioxidant properties of Weissella confusa KR780676, isolated from an Indian fermented food. LWT: Food Sci. Technol. 97, 53–60 (2018).

    CAS 

    Google Scholar 

  • 40.

    Sreejayan, N., Rao, M. N. A., Priyadarsini, K. I. & Devasagayam, T. P. A. Inhibition of radiation-induced lipid peroxidation by curcumin. Int. J. Pharm. 151(1), 127–130 (1997).

    CAS 

    Google Scholar 

  • 41.

    Yang, H., Wu, Y., Gan, C., Yue, T. & Yuan, Y. Characterization and antioxidant activity of a novel polysaccharide from Pholidota chinensis Lindl. Carbohydr. Polym. 138, 327–334 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 42.

    Sá, R. A. D. et al. Brazilian propolis protects Saccharomyces cerevisiae cells against oxidative stress. Braz. J. Microbiol. 44(3), 993–1000 (2013).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Mendes, V. et al. Effect of myricetin, pyrogallol, and phloroglucinol on yeast resistance to oxidative stress. Oxid. Med. Cell Longev. https://doi.org/10.1155/2015/782504 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Cortés-Rojo, C. et al. Elucidation of the effects of lipoperoxidation on the mitochondrial electron transport chain using yeast mitochondria with manipulated fatty acid content. J. Bioenerg. Biomembr. 41(1), 15 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 45.

    Cherian, D. A. et al. Malondialdehyde as a marker of oxidative stress in periodontitis patients. J. Pharm. Bioallied Sci. 11, S297 (2019).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 46.

    Ghani, M. A., Barril, C., Bedgood, D. R. Jr. & Prenzler, P. D. Measurement of antioxidant activity with the thiobarbituric acid reactive substances assay. Food Chem. 230, 195–207 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • 47.

    SJ, S., Veerabhadrappa, B., Subramaniyan, S. & Dyavaiah, M. Astaxanthin enhances the longevity of Saccharomyces cerevisiae by decreasing oxidative stress and apoptosis. FEMS Yeast Res. 19(1), foy113 (2019).

    Google Scholar 

  • 48.

    Azad, G. K. et al. (2014) Ebselen induces reactive oxygen species (ROS)-mediated cytotoxicity in Saccharomyces cerevisiae with inhibition of glutamate dehydrogenase being a target. FEBS Open Bio. 4, 77–89 (2014).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Pereira, M. D., Eleutherio, E. C. & Panek, A. D. Acquisition of tolerance against oxidative damage in Saccharomyces cerevisiae. BMC Microbiol. 1(1), 1–10 (2001).

    Google Scholar 

  • 50.

    Alugoju, P., Janardhanshetty, S. S., Subaramanian, S., Periyasamy, L. & Dyavaiah, M. Quercetin protects yeast Saccharomyces cerevisiae pep4 mutant from oxidative and apoptotic stress and extends chronological lifespan. Curr. Microbiol. 75(5), 519–530 (2018).

    CAS 
    PubMed 

    Google Scholar 

  • 51.

    Ferreira, T. C., de Moraes, L. M. P. & Campos, É. G. Cell density-dependent linoleic acid toxicity to Saccharomyces cerevisiae. FEMS Yeast Res. 11(5), 408–417 (2011).

    CAS 
    PubMed 

    Google Scholar 

  • 52.

    Cao, S. et al. A mitochondria-dependent pathway mediates the apoptosis of GSE-induced yeast. PLoS One 7(3), e32943 (2012).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 53.

    Madeo, F., Fröhlich, E. & Fröhlich, K. U. A yeast mutant showing diagnostic markers of early and late apoptosis. J. Cell Biol. 139(3), 729–734 (1997).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 54.

    Fabrizio, P. et al. SOD2 functions downstream of Sch9 to extend longevity in yeast. Genetics 163(1), 35–46 (2003).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 55.

    Ross, E. M. & Maxwell, P. H. Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence. Exp. Gerontol. 108, 189–200 (2018).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    Devi, P. B., Kavitake, D. & Shetty, P. H. Physico-chemical characterization of galactan exopolysaccharide produced by Weissella confusa KR780676. Int. J. Biol. Macromol. 93, 822–828 (2016).

    CAS 
    PubMed 

    Google Scholar 

  • 57.

    Kavitake, D., Balyan, S., Devi, P. B. & Shetty, P. H. Interface between food grade flavour and water soluble galactan biopolymer to form a stable water-in-oil-in-water emulsion. Int. J. Biol. Macromol. 135, 445–452 (2019).

    CAS 
    PubMed 

    Google Scholar 

  • 58.

    Kavitake, D., Balyan, S., Devi, P. B. & Shetty, P. H. Evaluation of oil-in-water (O/W) emulsifying properties of galactan exopolysaccharide from Weissella confusa KR780676. J. Food Sci. Technol. 57(4), 1579–1585 (2020).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 59.

    Alam, M. N., Bristi, N. J. & Rafiquzzaman, M. Review on in vivo and in vitro methods evaluation of antioxidant activity. Saudi Pharm. J. 21(2), 143–152 (2013).

    PubMed 

    Google Scholar 

  • 60.

    Musa, K. H., Abdullah, A., Kuswandi, B. & Hidayat, M. A. A novel high throughput method based on the DPPH dry reagent array for determination of antioxidant activity. Food Chem. 141(4), 4102–4106 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 61.

    Marcocci, L., Maguire, J. J., Droylefaix, M. T. & Packer, L. The nitric oxide-scavenging properties of Ginkgo biloba extract EGb 761. Biochem. Biophys. Res. Commun. 201(2), 748–755 (1994).

    CAS 
    PubMed 

    Google Scholar 

  • 62.

    Zhang, L. et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54, 270–275 (2013).

    PubMed 

    Google Scholar 

  • 63.

    Liu, J. et al. Production, characterization and antioxidant activities in vitro of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr. Polym. 78(2), 275–281 (2009).

    CAS 

    Google Scholar 

  • 64.

    Li, W. et al. Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2–1. J. Agric. Food Chem. 63(13), 3454–3463 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 65.

    Poljsak, B., Šuput, D. & Milisav, I. Achieving the balance between ROS and antioxidants: When to use the synthetic antioxidants. Oxid. Med. Cell. Longev. 956792. https://doi.org/10.1155/2013/956792 (2013).

  • 66.

    Moscovici, M. Present and future medical applications of microbial exopolysaccharides. Front. Microbiol. 6, 1012. https://doi.org/10.3389/fmicb.2015.01012 (2015).

  • 67.

    Weydert, C. J. & Cullen, J. J. Measurement of superoxide dismutase, catalase and glutathione peroxidase in cultured cells and tissue. Nat. Protoc. 5(1), 51–66 (2010).

    CAS 
    PubMed 

    Google Scholar 

  • 68.

    Wu, J., Zhang, Y., Ye, L. & Wang, C. The anti-cancer effects and mechanisms of lactic acid bacteria exopolysaccharides in vitro: A review. Carbohydr. Polym. 253, 117308 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • 69.

    Zhang, L. et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88. Int. J. Biol. Macromol. 54, 270–275 (2013).

    PubMed 

    Google Scholar 

  • 70.

    Ayala, A., Muñoz, M. F. & Argüelles, S. Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid. Med. Cell. Longev. 360438. https://doi.org/10.1155/2014/360438 (2014).

  • 71.

    Yang, H. et al. Two novel exopolysaccharides from Bacillus amyloliquefaciens C-1: Antioxidation and effect on oxidative stress. Curr. Microbiol. 70, 298–306 (2015).

    CAS 
    PubMed 

    Google Scholar 

  • 72.

    Park, M. H., Jo, M., Kim, Y. R., Lee, C. K. & Hong, J. T. Roles of peroxiredoxins in cancer, neurodegenerative diseases and inflammatory diseases. Pharmacol. Ther. 163, 1–23 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 73.

    Gostimskaya, I. & Grant, C. M. Yeast mitochondrial glutathione is an essential antioxidant with mitochondrial thioredoxin providing a back-up system. Free Radic. Biol. Med. 94, 55–65 (2016).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Pannala, V. R., Bazil, J. N., Camara, A. K. S. & Dash, R. K. A biophysically based mathematical model for the catalytic mechanism of glutathione reductase. Free Radic. Biol. Med. 65, 1385–1397 (2013).

    CAS 
    PubMed 

    Google Scholar 

  • 75.

    Ballatori, N. et al. Glutathione dysregulation and the etiology and progression of human diseases. Biol. Chem. 390, 191–214 (2009).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 76.

    Wu, G., Fang, Y. Z., Yang, S., Lupton, J. R. & Turner, N. D. Glutathione metabolism and its implications for health. J. Nutr. 134, 489–492 (2004).

    CAS 
    PubMed 

    Google Scholar 

  • 77.

    Lewinska, A. & Bartosz, G. Yeast flavohemoglobin protects against nitrosative stress and controls ferric reductase activity. Redox Rep. 11, 231–239 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 78.

    Cassanova, N., O’Brien, K. M., Stahl, B. T., McClure, T. & Poyton, R. O. Yeast flavohemoglobin, a nitric oxide oxidoreductase, is located in both the cytosol and the mitochondrial matrix. J. Biol. Chem. 280, 7645–7653 (2005).

    CAS 
    PubMed 

    Google Scholar 

  • 79.

    Kleinknecht, A. et al. C-terminal tyrosine residue modifications modulate the protective phosphorylation of serine 129 of α-synuclein in a yeast model of parkinson’s disease. PLoS Genet. 12, e1006098 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 80.

    Guaragnella, N. et al. The role of mitochondria in yeast programmed cell death. Front. Oncol. 2, 70 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 81.

    Woolford, C. A. et al. The PEP4 gene encodes an aspartyl protease implicated in the posttranslational regulation of Saccharomyces cerevisiae vacuolar hydrolases. Mol. Cell. Biol. 6(7), 2500–2510 (1986).

    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Hughes, K. R. et al. Bifidobacterium breve reduces apoptotic epithelial cell shedding in an exopolysaccharide and MyD88-dependent manner. Open Biol. 7, 160155 (2017).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 83.

    Dumitrescu, L. et al. Oxidative stress and the microbiota-gut-brain axis. Oxid. Med. Cell. Longev. 2406594 (2018). https://doi.org/10.1155/2018/2406594.

  • 84.

    Li, H. et al. Food-derived antioxidant polysaccharides and their pharmacological potential in neurodegenerative diseases. Nutrients 9, 778 (2017).

    PubMed Central 

    Google Scholar 

  • 85.

    Sudharshan, S. J. & Dyavaiah, M. Astaxanthin protects oxidative stress mediated DNA damage and enhances longevity in Saccharomyces cerevisiae. Biogerontology 22, 81–100 (2021).

    CAS 
    PubMed 

    Google Scholar 

  • Source link