Hirata, A. et al. Potential distribution of pine wilt disease under future climate change scenarios. PLoS ONE 12, e0182837 (2017).
Google Scholar
Naves, P. M., Camacho, S., De Sousa, E. M. D. & Quartau, J. A. Transmission of the pine wood nematode Bursaphelenchus xylophilus through feeding activity of Monochamus galloprovincialis (Col., Cerambycidae). J. Appl. Entomol. 131, 21–25 (2007).
Google Scholar
Mamiya, Y. Pathology of the pine wilt disease caused by Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 21, 201–220 (1983).
Google Scholar
Futai, K. Pine wood nematode, Bursaphelenchus xylophilus. Annu. Rev. Phytopathol. 51, 61–83 (2013).
Google Scholar
James, R., Tisserat, N. & Todd, T. Prevention of pine wilt of scots pine (Pinus sylvestris) with systemic abamectin injections. Arboric. Urban For. 32, 195–201 (2006).
Google Scholar
Gopal., R.M., Pomroy, W.E. & West, D.M. Resistance of field isolates of Trichostrongylus colubriformis and Ostertagia circumcincta to ivermectin. Int. J. Parasitol. 29, 781–786 (1999).
Barbosa, P. et al. Nematicidal activity of EOs and volatiles derived from portuguese aromatic flora against the pinewood nematode, Bursaphelenchus xylophilus. J. Nematol. 42, 8–16 (2010).
Google Scholar
Andrés, M. F., González-Coloma, A., Sanz, J., Burillo, J. & Sainz, P. Nematicidal activity of essential oils: A review. Phytochem. Rev. 11, 371–390 (2012).
Google Scholar
Harju, A. M. & Venäläinen, M. Measuring the decay resistance of Scots pine heartwood indirectly by the Folin-Ciocalteu assay. Can. J. For. Res. 36, 1797–1804 (2006).
Google Scholar
Schoeppner, A. & Kindl, H. Stilbene synthase (pinosylvine synthase) and its induction by ultraviolet light. FEBS Lett. 108, 349–352 (1979).
Google Scholar
Harju, A. M., Venäläinen, M., Laakso, T. & Saranpää, P. Wounding response in xylem of Scots pine seedlings shows wide genetic variation and connection with the constitutive defence of heartwood. Tree Physiol. 29, 19–25 (2009).
Google Scholar
Rosemann, D., Heller, W. & Sandermann, H. Biochemical plant responses to ozone: II. Induction of stilbene biosynthesis in Scots pine (Pinus sylvestris L.) seedlings. Plant Physiol. 97, 1280–1286 (1991).
Google Scholar
Gehlert, R., Schöppner, A. & Kindl, H. Stilbene synthase from seedlings of Pinus sylvestris: Purification and induction in response to fungal infection. Mol. Plant Microbe. Interact. 3, 444–449 (1990).
Google Scholar
Celimene, C., Micales, J., Ferge, L. & Young, R. Efficacy of pinosylvins against white rot and brown rot fungi. Holzforschung 53, 491–497 (1999).
Google Scholar
Lindberg, L., Willför, S., Hemming, J. & Holmbom, B. Antibacterial effects of hydrophilic knotwood extracts on papermill bacteria. J. Ind. Microbiol. Biotechnol. 31, 137–147 (2004).
Google Scholar
Bryant, J. P., Wieland, G. D., Reichardt, P. B., Lewis, V. E. & McCarthy, M. C. Pinosylvin methyl ether deters snowshoe hare feeding on green alder. Science 222, 1023–1025 (1983).
Google Scholar
Sullivan, T. P., Crump, D. R., Wieser, H. & Dixon, E. A. Influence of the plant antifeedant, pinosylvin, on suppression of feeding by snowshoe hares. J. Chem. Ecol. 187, 1151–1164 (1992).
Google Scholar
Suga, T. et al. Endogenous pine wood nematicidal substances in Pines, Pinus massoniana, P. strobus and P. palustris. Phytochemistry 33, 1395–1401 (1993).
Hwang, H. S., Han, J. Y. & Choi, Y. E. Enhanced accumulation of pinosylvin stilbenes and related gene expression in Pinus strobus after infection of pine wood nematode. Tree Physiol. 41, 1972–1987 (2021).
Google Scholar
Ramachandra, R. & Ravishankar, G. A. Plant cell cultures: Chemical factories of secondary metabolites. Biotechnol. Adv. 20, 101–153 (2002).
Google Scholar
Jeandet, P. et al. Phytostilbenes as agrochemicals: Biosynthesis, bioactivity, metabolic engineering and biotechnology. Nat. Prod. Rep. 38, 1282–1329 (2021).
Google Scholar
Krisa, S. et al. Stilbene production by Vitis vinifera cell suspension cultures: Methyl jasmonate induction and 13C biolabeling. J. Nat. Prod. 62, 1688–1690 (1999).
Google Scholar
Zamboni, A., Vrhovsek, U., Kassemeyer, H. H., Mattivi, F. & Velasco, R. Elicitor-induced resveratrol production in cell cultures of different grape genotypes (Vitis spp.). Vitis 45, 63–68 (2006).
Google Scholar
Lijavetzky, D. et al. Synergistic effect of methyl jasmonate and cyclodextrin on stilbene biosynthesis pathway gene expression and resveratrol production in Monastrell grapevine cell cultures. BMC Res. Notes 1, 132 (2008).
Google Scholar
Belhadj, A. et al. Effect of methyl jasmonate in combination with carbohydrates on gene expression of PR proteins, stilbene and anthocyanin accumulation in grapevine cell cultures. Plant Physiol. Biochem. 46, 493–499 (2008).
Google Scholar
Lange, B. M., Trost, M., Heller, W., Langebartels, C. & Sandermann, H. Jr. Elicitor-induced formation of free and cell-wall-bound stilbenes in cell-suspension cultures of Scots pine (Pinus sylvestris L.). Planta 194, 143–148 (1994).
Google Scholar
Mulabagal, V. & Tsay, H. S. Plant cell cultures—An alternative and efficient source for the production of biologically important secondary metabolites. Int. J. Eng. Sci. 2, 29–48 (2004).
Namdeo, A. G. Plant cell elicitation for production of secondary metabolites: A review. Pharmacogn. Rev. 1, 69–79 (2007).
Google Scholar
Walker, T. S., Bais, H. P. & Vivanco, J. M. Jasmonic acid induced hypericin production in cell suspension cultures of Hypericum perforatum L. (St. John’s wort). Phytochemistry 60, 289–293 (2002).
Google Scholar
Singh, A. & Dwivedi, P. Methyl-jasmonate and salicylic acid as potent elicitors for secondary metabolite production in medicinal plants: A review. J. Pharmacogn. Phytochem. 7, 750–757 (2018).
Google Scholar
Jones, A. M. P. & Saxena, P. K. Inhibition of phenylpropanoid biosynthesis in Artemisia annua L.: A novel approach to reduce oxidative browning in plant tissue culture. PLoS ONE 8, e76802 (2013).
Google Scholar
Tang, W. & Newton, R. J. Increase of polyphenol oxidase and decrease of polyamines correlate with tissue browning in Virginia pine (Pinus virginiana Mill.). Plant Sci. 167, 621–628 (2004).
Google Scholar
Laukkanen, H., Rautiainen, L., Taulavuori, E. & Hohtola, A. Changes in cellular structures and enzymatic activities during browning of Scots pine callus derived from mature buds. Tree Physiol. 20, 467–475 (2000).
Google Scholar
Litvay, J. D., Verma, D. C. & Johnson, M. A. Influence of loblolly pine (Pinus taeda L.). Culture medium and its components on growth and somatic embryogenesis of the wild carrot (Daucus carota L.). Plant Cell Rep. 4, 325–328 (1985).
Google Scholar
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real time quantitative PCR and the 2-∆∆CT Method. Methods 25, 402–408 (2001).
Google Scholar
Togashi, K., Matsunaga, K., Arakawa, Y. & Miyamoto, N. The random dispersal of Bursaphelenchus xylophilus in pine twigs. Trans Jpn. For. Soc. 114, 753 (2003).
Chiron, H. et al. Molecular cloning and functional expression of a stress-induced multifunctional O-methyltransferase with pinosylvin methyltransferase activity from Scots pine (Pinus sylvestris L.). Plant Mol. Biol. 446, 733–745 (2000).
Google Scholar
He, J., Zheng, Z. P., Zhu, Q., Guo, F. & Chen, J. Encapsulation mechanism of oxyresveratrol by β-cyclodextrin and hydroxypropyl-β-cyclodextrin and computational analysis. Molecules 22, 1801 (2017).
Google Scholar
Willför, S., Hemming, J., Reunanen, M. & Holmbom, B. Phenolic and lipophilic extractives in Scots pine knots and stemwood. Holzforschung 57, 359–372 (2003).
Google Scholar
Maruyama, T. E. & Hoshi, Y. Progress in somatic embryogenesis of Japanese pines. Front. Plant Sci. 10, 1–15 (2019).
Google Scholar
Jorgensen, E. The formation of pinosylvin and its monomethyl ether in the sapwood of Pinus resinosa Ait. Can. J. Bot. 39, 1765–1772 (1961).
Google Scholar

