Preloader

The amniotic fluid proteome changes with gestational age in normal pregnancy: a cross-sectional study

  • 1.

    Underwood, M. A., Gilbert, W. M. & Sherman, M. P. Amniotic fluid: Not just fetal urine anymore. J. Perinatol. 25, 341–348. https://doi.org/10.1038/sj.jp.7211290 (2005).

    Article 
    PubMed 

    Google Scholar 

  • 2.

    Fischer, R. L. Amniotic fluid: Physiology and assessment. GLOWM The Global Library of Women’s Medicine (2009).

  • 3.

    Cho, C. K., Shan, S. J., Winsor, E. J. & Diamandis, E. P. Proteomics analysis of human amniotic fluid. Mol. Cell Proteomics 6, 1406–1415. https://doi.org/10.1074/mcp.M700090-MCP200 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 4.

    Hui, L. & Bianchi, D. W. Cell-free fetal nucleic acids in amniotic fluid. Hum. Reprod. Update 17, 362–371. https://doi.org/10.1093/humupd/dmq049 (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 5.

    Tsangaris, G. T. et al. The normal human amniotic fluid supernatant proteome. In Vivo 20, 479–490 (2006).

    CAS 
    PubMed 

    Google Scholar 

  • 6.

    Tsangaris, G. T. et al. Application of proteomics for the identification of biomarkers in amniotic fluid: Are we ready to provide a reliable prediction?. EPMA J. 2, 149–155. https://doi.org/10.1007/s13167-011-0083-0 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 7.

    Page, N. M., Kemp, C. F., Butlin, D. J. & Lowry, P. J. Placental peptides as markers of gestational disease. Reproduction 123, 487–495. https://doi.org/10.1530/rep.0.1230487 (2002).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 8.

    Vasani, A. & Kumar, M. S. Advances in the proteomics of amniotic fluid to detect biomarkers for chromosomal abnormalities and fetomaternal complications during pregnancy. Exp. Rev. Proteom. 16, 277–286. https://doi.org/10.1080/14789450.2019.1578213 (2019).

    CAS 
    Article 

    Google Scholar 

  • 9.

    Tsangaris, G. T. et al. Proteomic analysis of amniotic fluid in pregnancies with Down syndrome. Proteomics 6, 4410–4419. https://doi.org/10.1002/pmic.200600085 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 10.

    Mavrou, A. et al. Proteomic analysis of amniotic fluid in pregnancies with Turner syndrome fetuses. J. Proteome Res. 7, 1862–1866. https://doi.org/10.1021/pr700588u (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 11.

    Cen, J. et al. Comparative proteome analysis of amniotic fluids and placentas from patients with idiopathic polyhydramnios. Placenta 89, 67–77. https://doi.org/10.1016/j.placenta.2019.10.010 (2020).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 12.

    Romero, R. et al. Proteomic analysis of amniotic fluid to identify women with preterm labor and intra-amniotic inflammation/infection: the use of a novel computational method to analyze mass spectrometric profiling. J. Matern. Fetal Neonatal Med. 21, 367–388. https://doi.org/10.1080/14767050802045848 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 13.

    Vuadens, F. et al. Identification of biologic markers of the premature rupture of fetal membranes: proteomic approach. Proteomics 3, 1521–1525. https://doi.org/10.1002/pmic.200300455 (2003).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 14.

    Vascotto, C. et al. Oxidized transthyretin in amniotic fluid as an early marker of preeclampsia. J. Proteome Res. 6, 160–170. https://doi.org/10.1021/pr060315z (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 15.

    Bujold, E. et al. Proteomic profiling of amniotic fluid in preterm labor using two-dimensional liquid separation and mass spectrometry. J. Matern. Fetal Neonatal Med. 21, 697–713. https://doi.org/10.1080/14767050802053289 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 16.

    Romero, R. et al. Amniotic fluid interleukin-6 determinations are of diagnostic and prognostic value in preterm labor. Am. J. Reprod. Immunol. 30, 167–183. https://doi.org/10.1111/j.1600-0897.1993.tb00618.x (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 17.

    Romero, R. et al. A comparative study of the diagnostic performance of amniotic fluid glucose, white blood cell count, interleukin-6, and gram stain in the detection of microbial invasion in patients with preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 169, 839–851. https://doi.org/10.1016/0002-9378(93)90014-a (1993).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 18.

    Romero, R. et al. Prevalence and clinical significance of sterile intra-amniotic inflammation in patients with preterm labor and intact membranes. Am. J. Reprod. Immunol. 72, 458–474. https://doi.org/10.1111/aji.12296 (2014).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 19.

    Romero, R. et al. Sterile and microbial-associated intra-amniotic inflammation in preterm prelabor rupture of membranes. J. Matern. Fetal Neonatal Med. 28, 1394–1409. https://doi.org/10.3109/14767058.2014.958463 (2015).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 20.

    Chaemsaithong, P. et al. A rapid interleukin-6 bedside test for the identification of intra-amniotic inflammation in preterm labor with intact membranes. J. Matern. Fetal Neonatal Med. 29, 349–359. https://doi.org/10.3109/14767058.2015.1006620 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 21.

    Leaños-Miranda, A. et al. Interleukin-6 in amniotic fluid: A reliable marker for adverse outcomes in women in preterm labor and intact membranes. Fetal Diagn. Ther. https://doi.org/10.1159/000514898 (2021).

  • 22.

    Wilson, R. D., Committee, S. G. & Contributor, S. Prenatal screening, diagnosis, and pregnancy management of fetal neural tube defects. J. Obstet. Gynaecol. Can. 36, 927–939. https://doi.org/10.1016/S1701-2163(15)30444-8 (2014).

    Article 
    PubMed 

    Google Scholar 

  • 23.

    American College of Obstetricians and Gynecologists. Amniocentesis, <https://www.acog.org/womens-health/faqs/amniocentesis> (2021, March).

  • 24.

    Pös, O., Budiš, J. & Szemes, T. Recent trends in prenatal genetic screening and testing. F1000Res https://doi.org/10.12688/f1000research.16837.1 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 25.

    Ngo, T. T. M. et al. Noninvasive blood tests for fetal development predict gestational age and preterm delivery. Science 360, 1133–1136. https://doi.org/10.1126/science.aar3819 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 26.

    Vlková, B., Szemes, T., Minárik, G., Turna, J. & Celec, P. Does maternal saliva contain fetal DNA usable for prenatal diagnostics?. Med. Hypotheses 74, 258–260. https://doi.org/10.1016/j.mehy.2009.09.022 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 27.

    Tsui, N. B. et al. High resolution size analysis of fetal DNA in the urine of pregnant women by paired-end massively parallel sequencing. PLoS ONE 7, e48319. https://doi.org/10.1371/journal.pone.0048319 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 28.

    Perluigi, M. et al. Proteomic analysis for the study of amniotic fluid protein composition. J. Prenat. Med. 3, 39–41 (2009).

    PubMed 
    PubMed Central 

    Google Scholar 

  • 29.

    Kamath-Rayne, B. D. et al. Systems biology evaluation of cell-free amniotic fluid transcriptome of term and preterm infants to detect fetal maturity. BMC Med. Genom. 8, 67. https://doi.org/10.1186/s12920-015-0138-5 (2015).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Hampton, T. Comprehensive, “proteomic profile” of amniotic fluid may aid prenatal diagnosis. JAMA 298, 1751. https://doi.org/10.1001/jama.298.15.1751 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 31.

    Liu, X., Song, Y., Guo, Z., Sun, W. & Liu, J. A comprehensive profile and inter-individual variations analysis of the human normal amniotic fluid proteome. J. Proteom. 192, 1–9. https://doi.org/10.1016/j.jprot.2018.04.023 (2019).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Romero, R. et al. The maternal plasma proteome changes as a function of gestational age in normal pregnancy: A longitudinal study. Am. J. Obstet. Gynecol. 217(67), e61-67.e21. https://doi.org/10.1016/j.ajog.2017.02.037 (2017).

    CAS 
    Article 

    Google Scholar 

  • 33.

    Nilsson, S., Ramström, M., Palmblad, M., Axelsson, O. & Bergquist, J. Explorative study of the protein composition of amniotic fluid by liquid chromatography electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. J. Proteome Res. 3, 884–889. https://doi.org/10.1021/pr0499545 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 34.

    Tsangaris, G., Weitzdörfer, R., Pollak, D., Lubec, G. & Fountoulakis, M. The amniotic fluid cell proteome. Electrophoresis 26, 1168–1173. https://doi.org/10.1002/elps.200406183 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 35.

    Cho, C. K., Smith, C. R. & Diamandis, E. P. Amniotic fluid proteome analysis from Down syndrome pregnancies for biomarker discovery. J. Proteome Res. 9, 3574–3582. https://doi.org/10.1021/pr100088k (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 36.

    Queloz, P. A. et al. Proteomic analyses of amniotic fluid: Potential applications in health and diseases. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 850, 336–342. https://doi.org/10.1016/j.jchromb.2006.12.006 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 37.

    Michaels, J. E. et al. Comprehensive proteomic analysis of the human amniotic fluid proteome: Gestational age-dependent changes. J. Proteome Res. 6, 1277–1285. https://doi.org/10.1021/pr060543t (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 38.

    Kolialexi, A., Tsangaris, G. T. & Mavrou, A. Proteomics in prenatal diagnosis. Exp. Rev. Proteom. 6, 111–113. https://doi.org/10.1586/epr.09.6 (2009).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Gold, L. et al. Aptamer-based multiplexed proteomic technology for biomarker discovery. PLoS ONE 5, e15004. https://doi.org/10.1371/journal.pone.0015004 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 40.

    Davies, D. R. et al. Unique motifs and hydrophobic interactions shape the binding of modified DNA ligands to protein targets. Proc. Natl. Acad. Sci. U S A 109, 19971–19976. https://doi.org/10.1073/pnas.1213933109 (2012).

    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 41.

    Candia, J. et al. Assessment of variability in the SOMAscan assay. Sci. Rep. 7, 14248. https://doi.org/10.1038/s41598-017-14755-5 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 42.

    Erez, O. et al. The prediction of late-onset preeclampsia: Results from a longitudinal proteomics study. PLoS ONE 12, e0181468. https://doi.org/10.1371/journal.pone.0181468 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 43.

    Tarca, A. L. et al. The prediction of early preeclampsia: Results from a longitudinal proteomics study. PLoS ONE 14, e0217273. https://doi.org/10.1371/journal.pone.0217273 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 44.

    Ghaemi, M. S. et al. Proteomic signatures predict preeclampsia in individual cohorts but not across cohorts – implications for clinical biomarker studies. J. Matern. Fetal Neonatal Med. https://doi.org/10.1080/14767058.2021.1888915 (2021).

    Article 
    PubMed 

    Google Scholar 

  • 45.

    Shainker, S. A. et al. Placenta accreta spectrum: Biomarker discovery using plasma proteomics. Am. J. Obstet. Gynecol. 223(433), e431-433.e414. https://doi.org/10.1016/j.ajog.2020.03.019 (2020).

    CAS 
    Article 

    Google Scholar 

  • 46.

    Williams, S. A. et al. Plasma protein patterns as comprehensive indicators of health. Nat. Med. 25, 1851–1857. https://doi.org/10.1038/s41591-019-0665-2 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 47.

    Ganz, P. et al. Development and validation of a protein-based risk score for cardiovascular outcomes among patients with stable coronary heart disease. JAMA 315, 2532–2541. https://doi.org/10.1001/jama.2016.5951 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 48.

    Williams, S. A. et al. Improving assessment of drug safety through proteomics: Early detection and mechanistic characterization of the unforeseen harmful effects of torcetrapib. Circulation 137, 999–1010. https://doi.org/10.1161/CIRCULATIONAHA.117.028213 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 49.

    Tarca, A. L. et al. Amniotic fluid cell-free transcriptome: A glimpse into fetal development and placental cellular dynamics during normal pregnancy. BMC Med. Genom. 13, 25. https://doi.org/10.1186/s12920-020-0690-5 (2020).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Gomez-Lopez, N. et al. The cellular transcriptome in the maternal circulation during normal pregnancy: A longitudinal study. Front. Immunol. 10, 2863. https://doi.org/10.3389/fimmu.2019.02863 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 51.

    Su, A. I. et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. U S A 101, 6062–6067. https://doi.org/10.1073/pnas.0400782101 (2004).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 52.

    Zhao, M. et al. A comparative proteomics analysis of five body fluids: Plasma, urine, cerebrospinal fluid, amniotic fluid, and saliva. Proteom. Clin. Appl. 12, e1800008. https://doi.org/10.1002/prca.201800008 (2018).

    CAS 
    Article 

    Google Scholar 

  • 53.

    Lollo, B., Steele, F. & Gold, L. Beyond antibodies: New affinity reagents to unlock the proteome. Proteomics 14, 638–644. https://doi.org/10.1002/pmic.201300187 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 54.

    Gerson, C. et al. The lactoperoxidase system functions in bacterial clearance of airways. Am. J. Respir. Cell Mol. Biol. 22, 665–671. https://doi.org/10.1165/ajrcmb.22.6.3980 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 55.

    Munther, S. The impact of salivary lactoperoxidase and histatin-5 on early childhood caries severity in relation to nutritional status. Saudi Dent. J. 32, 410–416. https://doi.org/10.1016/j.sdentj.2020.01.010 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 56.

    El-Chemaly, S., Salathe, M., Baier, S., Conner, G. E. & Forteza, R. Hydrogen peroxide-scavenging properties of normal human airway secretions. Am. J. Respir. Crit. Care Med. 167, 425–430. https://doi.org/10.1164/rccm.200206-531OC (2003).

    Article 
    PubMed 

    Google Scholar 

  • 57.

    Kivela, J., Parkkila, S., Parkkila, A. K., Leinonen, J. & Rajaniemi, H. Salivary carbonic anhydrase isoenzyme VI. J. Physiol. 520(Pt 2), 315–320. https://doi.org/10.1111/j.1469-7793.1999.t01-1-00315.x (1999).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 58.

    Uhlén, M. et al. Proteomics. Tissue-based map of the human proteome. Science 347, 1260419. https://doi.org/10.1126/science.1260419 (2015).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Poggi, L., Casarosa, S. & Carl, M. An eye on the wnt inhibitory factor Wif1. Front. Cell Dev. Biol. 6, 167. https://doi.org/10.3389/fcell.2018.00167 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 60.

    Rodrigues, T. L. et al. Hypophosphatasia-associated deficiencies in mineralization and gene expression in cultured dental pulp cells obtained from human teeth. J. Endod. 38, 907–912. https://doi.org/10.1016/j.joen.2012.02.008 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 61.

    Vannahme, C. et al. Molecular cloning of testican-2: Defining a novel calcium-binding proteoglycan family expressed in brain. J. Neurochem. 73, 12–20. https://doi.org/10.1046/j.1471-4159.1999.0730012.x (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 62.

    Hadchouel, A. et al. Identification of SPOCK2 as a susceptibility gene for bronchopulmonary dysplasia. Am. J. Respir. Crit. Care Med. 184, 1164–1170. https://doi.org/10.1164/rccm.201103-0548OC (2011).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 63.

    Romero, R. et al. Soluble receptor for advanced glycation end products (sRAGE) and endogenous secretory RAGE (esRAGE) in amniotic fluid: Modulation by infection and inflammation. J. Perinat. Med. 36, 388–398. https://doi.org/10.1515/JPM.2008.076 (2008).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 64.

    Tabbah, S. et al. Amniotic fluid hepcidin in pregnancies complicated by intraamniotic infection. Am. J. Obstet. Gynecol. 212, 1 (2015).

    Article 

    Google Scholar 

  • 65.

    O’Leary, N. A. et al. Reference sequence (RefSeq) database at NCBI: Current status, taxonomic expansion, and functional annotation. Nucl. Acids Res. 44, D733-745. https://doi.org/10.1093/nar/gkv1189 (2016).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 66.

    Buhimschi, I. A. et al. The receptor for advanced glycation end products (RAGE) system in women with intraamniotic infection and inflammation. Am. J. Obstet. Gynecol. 196(181), e181–e113. https://doi.org/10.1016/j.ajog.2006.09.001 (2007).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Kossiva, L., Soldatou, A., Gourgiotis, D. I., Stamati, L. & Tsentidis, C. Serum hepcidin: Indication of its role as an “acute phase” marker in febrile children. Ital. J. Pediatr. 39, 25. https://doi.org/10.1186/1824-7288-39-25 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 68.

    Pepys, M. B. & Hirschfield, G. M. C-reactive protein: A critical update. J. Clin. Invest. 111, 1805–1812. https://doi.org/10.1172/JCI18921 (2003).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 69.

    Bhatti, G. et al. Compartmentalized profiling of amniotic fluid cytokines in women with preterm labor. PLoS ONE 15, e0227881. https://doi.org/10.1371/journal.pone.0227881 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 70.

    Maglott, D., Ostell, J., Pruitt, K. D. & Tatusova, T. Entrez Gene: Gene-centered information at NCBI. Nucl. Acids Res. 33, D54-58. https://doi.org/10.1093/nar/gki031 (2005).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 71.

    Gomez-Lopez, N. et al. The immunophenotype of amniotic fluid leukocytes in normal and complicated pregnancies. Am. J. Reprod. Immunol. 79, e12827. https://doi.org/10.1111/aji.12827 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 72.

    Gomez-Lopez, N. et al. Neutrophil extracellular traps in the amniotic cavity of women with intra-amniotic infection: A new mechanism of host defense. Reprod. Sci. 24, 1139–1153. https://doi.org/10.1177/1933719116678690 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 73.

    Gomez-Lopez, N. et al. Amniotic fluid neutrophils can phagocytize bacteria: A mechanism for microbial killing in the amniotic cavity. Am. J. Reprod. Immunol. https://doi.org/10.1111/aji.12723 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 74.

    Martinez-Varea, A. et al. Clinical chorioamnionitis at term VII: The amniotic fluid cellular immune response. J. Perinat. Med. 45, 523–538. https://doi.org/10.1515/jpm-2016-0225 (2017).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 75.

    Gomez-Lopez, N. et al. Are amniotic fluid neutrophils in women with intraamniotic infection and/or inflammation of fetal or maternal origin?. Am. J. Obstet. Gynecol. 217(693), e691-693.e616. https://doi.org/10.1016/j.ajog.2017.09.013 (2017).

    Article 

    Google Scholar 

  • 76.

    Tarca, A. L. et al. Targeted expression profiling by RNA-Seq improves detection of cellular dynamics during pregnancy and identifies a role for T cells in term parturition. Sci. Rep. 9, 848. https://doi.org/10.1038/s41598-018-36649-w (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 77.

    Galaz, J. et al. Cellular immune responses in amniotic fluid of women with preterm clinical chorioamnionitis. Inflam. Res. Off. J. Eur. Histamine Res. So. 69, 203–216. https://doi.org/10.1007/s00011-019-01308-x (2020).

    CAS 
    Article 

    Google Scholar 

  • 78.

    Gomez-Lopez, N. et al. RNA sequencing reveals diverse functions of amniotic fluid neutrophils and monocytes/macrophages in intra-amniotic infection. J. Innate Immun. 13, 63–82. https://doi.org/10.1159/000509718 (2021).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 79.

    Rauch, U., Hirakawa, S., Oohashi, T., Kappler, J. & Roos, G. Cartilage link protein interacts with neurocan, which shows hyaluronan binding characteristics different from CD44 and TSG-6. Matrix Biol. 22, 629–639. https://doi.org/10.1016/j.matbio.2003.11.007 (2004).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 80.

    Urano, T. et al. Single-nucleotide polymorphism in the hyaluronan and proteoglycan link protein 1 (HAPLN1) gene is associated with spinal osteophyte formation and disc degeneration in Japanese women. Eur. Spine J. 20, 572–577. https://doi.org/10.1007/s00586-010-1598-0 (2011).

    Article 
    PubMed 

    Google Scholar 

  • 81.

    Evanko, S. P. et al. A role for HAPLN1 during phenotypic modulation of human lung fibroblasts in vitro. J. Histochem. Cytochem. 68, 797–811. https://doi.org/10.1369/0022155420966663 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 82.

    Watanabe, H. & Yamada, Y. Mice lacking link protein develop dwarfism and craniofacial abnormalities. Nat. Genet. 21, 225–229. https://doi.org/10.1038/6016 (1999).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 83.

    Wirrig, E. E. et al. Cartilage link protein 1 (Crtl1), an extracellular matrix component playing an important role in heart development. Dev. Biol. 310, 291–303. https://doi.org/10.1016/j.ydbio.2007.07.041 (2007).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 84.

    Eskici, N. F., Erdem-Ozdamar, S. & Dayangac-Erden, D. The altered expression of perineuronal net elements during neural differentiation. Cell Mol. Biol. Lett. 23, 5. https://doi.org/10.1186/s11658-018-0073-5 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 85.

    Long, K. R. et al. Extracellular matrix components HAPLN1, lumican, and collagen I cause hyaluronic acid-dependent folding of the developing human neocortex. Neuron 99, 702-719.e706. https://doi.org/10.1016/j.neuron.2018.07.013 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 86.

    Consortium, U. UniProt: A worldwide hub of protein knowledge. Nucl. Acids Res. 47, D506–D515. https://doi.org/10.1093/nar/gky1049 (2019).

    CAS 
    Article 

    Google Scholar 

  • 87.

    Liu, C. X., Li, Y., Obermoeller-McCormick, L. M., Schwartz, A. L. & Bu, G. The putative tumor suppressor LRP1B, a novel member of the low density lipoprotein (LDL) receptor family, exhibits both overlapping and distinct properties with the LDL receptor-related protein. J. Biol. Chem. 276, 28889–28896. https://doi.org/10.1074/jbc.M102727200 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 88.

    Haas, J. et al. LRP1b shows restricted expression in human tissues and binds to several extracellular ligands, including fibrinogen and apoE-carrying lipoproteins. Atherosclerosis 216, 342–347. https://doi.org/10.1016/j.atherosclerosis.2011.02.030 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 89.

    Bakker, J. et al. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat. Neurosci. 9, 220–226. https://doi.org/10.1038/nn1624 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 90.

    Pacora, P. et al. Lactoferrin in intrauterine infection, human parturition, and rupture of fetal membranes. Am. J. Obstet. Gynecol. 183, 904–910. https://doi.org/10.1067/mob.2000.108882 (2000).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 91.

    Romero, R. et al. Isobaric labeling and tandem mass spectrometry: a novel approach for profiling and quantifying proteins differentially expressed in amniotic fluid in preterm labor with and without intra-amniotic infection/inflammation. J. Matern. Fetal Neonatal Med. 23, 261–280. https://doi.org/10.3109/14767050903067386 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 92.

    Rak, K., Kornafel, D., Mazurek, D. & Bronkowska, M. Lactoferrin level in maternal serum is related to birth anthropometry – an evidence for an indirect biomarker of intrauterine homeostasis?. J. Matern. Fetal Neonatal Med. 32, 4043–4050. https://doi.org/10.1080/14767058.2018.1481040 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 93.

    Canny, G. et al. Lipid mediator-induced expression of bactericidal/ permeability-increasing protein (BPI) in human mucosal epithelia. Proc. Natl. Acad. Sci. U S A 99, 3902–3907. https://doi.org/10.1073/pnas.052533799 (2002).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 94.

    Son, G. H. et al. Whole blood RNA sequencing reveals a differential transcriptomic profile associated with cervical insufficiency: A pilot study. Reprod. Biol. Endocrinol. 19, 32. https://doi.org/10.1186/s12958-021-00715-2 (2021).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 95.

    Wu, Z. et al. LOX-1 deletion improves neutrophil responses, enhances bacterial clearance, and reduces lung injury in a murine polymicrobial sepsis model. Infect. Immun. 79, 2865–2870. https://doi.org/10.1128/IAI.01317-10 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 96.

    Kim, C. J. et al. Acute chorioamnionitis and funisitis: Definition, pathologic features, and clinical significance. Am. J. Obstet. Gynecol. 213, S29-52. https://doi.org/10.1016/j.ajog.2015.08.040 (2015).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 97.

    Brunzel, N. A. Fundamentals of urine & body fluid analysis (Elsevier, 2018).

    Google Scholar 

  • 98.

    Jasinska, A. J., Rostamian, D., Davis, A. T. & Kavanagh, K. Transcriptomic analysis of cell-free fetal RNA in the amniotic fluid of vervet monkeys (Chlorocebus sabaeus). Comp. Med. 70, 67–74. https://doi.org/10.30802/AALAS-CM-19-000037 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 99.

    Hui, L., Beard, S. & Hannan, N. J. Measuring fetal brain and lung transcripts in amniotic fluid supernatant: A comparison of digital PCR and RT-qPCR methods. J. Matern. Fetal Neonatal Med. 31, 3191–3196. https://doi.org/10.1080/14767058.2017.1367378 (2018).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 100.

    Hui, L., Wick, H. C., Edlow, A. G., Cowan, J. M. & Bianchi, D. W. Global gene expression analysis of term amniotic fluid cell-free fetal RNA. Obstet. Gynecol. 121, 1248–1254. https://doi.org/10.1097/AOG.0b013e318293d70b (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 101.

    SomaLogic, I. SOMAscan Proteomic Assay. (Boulder, CO, 2017).

  • 102.

    Welch, B. L. The generalization of `Student’s’ problem when several different population variances are involved. Biometrika 34, 28–35. https://doi.org/10.2307/2332510 (1947).

    MathSciNet 
    CAS 
    Article 
    PubMed 
    MATH 

    Google Scholar 

  • 103.

    Fisher, R. A. S. Statistical methods for research workers. Fifth edition. edn, (Oliver and Boyd, 1934).

  • 104.

    Ritchie, M. E. et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucl. Acids Res. 43, e47. https://doi.org/10.1093/nar/gkv007 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 105.

    Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Royal Stat. Soc. Ser. B (Methodological) 57, 289–300 (1995).

    MathSciNet 
    MATH 

    Google Scholar 

  • 106.

    Allison, D. B., Cui, X., Page, G. P. & Sabripour, M. Microarray data analysis: from disarray to consolidation and consensus. Nat. Rev. Genet. 7, 55–65. https://doi.org/10.1038/nrg1749 (2006).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 107.

    Mittal, P. et al. Characterization of the myometrial transcriptome and biological pathways of spontaneous human labor at term. J. Perinat. Med. 38, 617–643. https://doi.org/10.1515/jpm.2010.097 (2010).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 108.

    Pappas, A. et al. Transcriptomics of maternal and fetal membranes can discriminate between gestational-age matched preterm neonates with and without cognitive impairment diagnosed at 18–24 months. PLoS ONE 10, e0118573. https://doi.org/10.1371/journal.pone.0118573 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 109.

    Tarca, A. L. et al. Strengths and limitations of microarray-based phenotype prediction: Lessons learned from the IMPROVER diagnostic signature challenge. Bioinformatics 29, 2892–2899. https://doi.org/10.1093/bioinformatics/btt492 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 110.

    Langfelder, P. & Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinform. 9, 559. https://doi.org/10.1186/1471-2105-9-559 (2008).

    CAS 
    Article 

    Google Scholar 

  • 111.

    Langfelder, P., Mischel, P. S. & Horvath, S. When is hub gene selection better than standard meta-analysis?. PLoS ONE 8, e61505. https://doi.org/10.1371/journal.pone.0061505 (2013).

    CAS 
    Article 
    PubMed 
    PubMed Central 
    ADS 

    Google Scholar 

  • 112.

    Falcon, S. & Gentleman, R. Using GOstats to test gene lists for GO term association. Bioinformatics 23, 257–258. https://doi.org/10.1093/bioinformatics/btl567 (2007).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • 113.

    Ashburner, M. et al. Gene ontology: Tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29. https://doi.org/10.1038/75556 (2000).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • 114.

    PCAtools: Everything Principal Components Analysis v. 2.4.0 (R package, 2021).

  • 115.

    R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, Vienna, Austria, 2020).

  • 116.

    EnhancedVolcano: Publication-ready volcano plots with enhanced colouring and labeling (R package, 2021).

  • 117.

    pheatmap: Pretty Heatmaps v. 1.0.12 (R package, 2019).

  • Source link