Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. D. & Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).
Google Scholar
Zhang, J. Z. & Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020).
Google Scholar
King, P. W. Semi-synthetic strategy. Nat. Energy 3, 921–922 (2018).
Léger, C. & Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 2379–2438 (2008).
Saar, K. L. et al. Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nat. Energy 3, 75–81 (2018).
Google Scholar
Wey, L. T. et al. The development of biophotovoltaic systems for power generation and biological analysis. ChemElectroChem 6, 5375–5386 (2019).
Google Scholar
Zhang, J. Z. et al. Photoelectrochemistry of photosystem II in vitro vs in vivo. J. Am. Chem. Soc. 140, 6–9 (2018).
Google Scholar
McCormick, A. J. et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8, 1092–1109 (2015).
Google Scholar
Bradley, R. W., Bombelli, P., Lea-Smith, D. J. & Howe, C. J. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Phys. Chem. Chem. Phys. 15, 13611–13618 (2013).
Google Scholar
Sekar, N., Jain, R., Yan, Y. & Ramasamy, R. P. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria. Biotechnol. Bioeng. 113, 675–679 (2016).
Google Scholar
Liu, C., Dasgupta, N. P. & Yang, P. Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 26, 415–422 (2014).
Google Scholar
Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).
Google Scholar
Wijnhoven, J. E. & Vos, W. L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998).
Google Scholar
Liu, Y. et al. Macroporous indium tin oxide electrode layers as conducting substrates for immobilization of bulky electroactive guests. Electrochim. Acta 140, 108–115 (2014).
Google Scholar
Riedel, M. & Lisdat, F. Integration of enzymes in polyaniline-sensitized 3D inverse opal TiO2 architectures for light-driven biocatalysis and light-to-current conversion. ACS Appl. Mater. Interfaces 10, 267–277 (2018).
Google Scholar
Xia, L. et al. Zinc oxide inverse opal electrodes modified by glucose oxidase for electrochemical and photoelectrochemical biosensor. Biosens. Bioelectron. 59, 350–357 (2014).
Google Scholar
Arsenault, E., Soheilnia, N. & Ozin, G. A. Periodic macroporous nanocrystalline antimony-doped tin oxide electrode. ACS Nano 5, 2984–2988 (2011).
Google Scholar
Wenzel, T., Härtter, D., Bombelli, P., Howe, C. J. & Steiner, U. Porous translucent electrodes enhance current generation from photosynthetic biofilms. Nat. Commun. 9, 1299 (2018).
Fang, X., Kalathil, S., Divitini, G., Wang, Q. & Reisner, E. A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proc. Natl Acad. Sci. USA 117, 5074–5080 (2020).
Google Scholar
Sturmberg, B. C. P. et al. Modal analysis of enhanced absorption in silicon nanowire arrays. Opt. Express 19, A1067–A1081 (2011).
Google Scholar
Ali, M. et al. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016).
Google Scholar
Wang, K., Chang, Y.-H., Zhang, C. & Wang, B. Conductive-on-demand: tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon 98, 397–403 (2016).
Saleh, M. S., Li, J., Park, J. & Panat, R. 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit. Manuf. 23, 70–78 (2018).
Google Scholar
Saleh, M. S., Hu, C. & Panat, R. Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Sci. Adv. 3, e1601986 (2017).
Ćatić, N. et al. Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. Appl. Mater. Today 19, 100618 (2020).
Jabari, E. & Toyserkani, E. Micro-scale aerosol-jet printing of graphene interconnects. Carbon 91, 321–329 (2015).
Google Scholar
Sukeshini, A. M. et al. Aerosol jet printing and microstructure of SOFC electrolyte and cathode layers. ECS Trans. 35, 2151 (2011).
Google Scholar
Kalio, A. et al. Development of lead-free silver ink for front contact metallization. Sol. Energy Mater. Sol. Cells 106, 51–54 (2012).
Google Scholar
Lu, S. et al. Flexible, print-in-place 1D–2D thin-film transistors using aerosol jet printing. ACS Nano 13, 11263–11272 (2019).
Google Scholar
Hong, K. et al. Aerosol jet printed, sub-2 V complementary circuits constructed from P- and N-type electrolyte gated transistors. Adv. Mater. 26, 7032–7037 (2014).
Google Scholar
Lin, J.-T. et al. A high-efficiency HIT solar cell with pillar texturing. IEEE J. Photovolt. 8, 669–675 (2018).
Saini, D. K., Pabbi, S. & Shukla, P. Cyanobacterial pigments: perspectives and biotechnological approaches. Food Chem. Toxicol. 120, 616–624 (2018).
Google Scholar
Wey, L. T. et al. A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis. Electrochim. Acta 395, 139214 (2021).
Google Scholar
Clifford, E. R. et al. Phenazines as model low-midpoint potential electron shuttles for photosynthetic bioelectrochemical systems. Chem. Sci. 12, 3328–3338 (2021).
Google Scholar
Torimura, M., Miki, A., Wadano, A., Kano, K. & Ikeda, T. Electrochemical investigation of cyanobacteria Synechococcus sp. PCC7942-catalyzed photoreduction of exogenous quinones and photoelectrochemical oxidation of water. J. Electroanal. Chem. 496, 21–28 (2001).
Google Scholar
Reggente, M., Politi, S., Antonucci, A., Tamburri, E. & Boghossian, A. A. Design of optimized PEDOT-based electrodes for enhancing performance of living photovoltaics based on phototropic bacteria. Adv. Mater. Technol. 5, 1900931 (2020).
Google Scholar
Cereda, A. et al. A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp. PCC6803. PLoS ONE 9, e91484 (2014).
Zeng, Y. et al. Photoactive conjugated polymer-based hybrid biosystems for enhancing cyanobacterial photosynthesis and regulating redox state of protein. Adv. Funct. Mater. 31, 2007814 (2021).
Google Scholar
Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205 (1971).
Google Scholar
Lea-Smith, D. J. et al. Thylakoid terminal oxidases are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol. 162, 484–495 (2013).
Google Scholar
Yang, C., Zhou, E., Miyanishi, S., Hashimoto, K. & Tajima, K. Preparation of active layers in polymer solar cells by aerosol jet printing. ACS Appl. Mater. Interfaces 3, 4053–4058 (2011).
Google Scholar
Fang, X. et al. Structure–activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett. 19, 1844–1850 (2019).
Google Scholar
R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).
Wei, T. & Simko, V. corrplot: visualization of a correlation matrix. R package version 0.84 https://github.com/taiyun/corrplot (2017).

