Preloader

3D-printed hierarchical pillar array electrodes for high-performance semi-artificial photosynthesis

  • Kornienko, N., Zhang, J. Z., Sakimoto, K. K., Yang, P. D. & Reisner, E. Interfacing nature’s catalytic machinery with synthetic materials for semi-artificial photosynthesis. Nat. Nanotechnol. 13, 890–899 (2018).

    CAS 

    Google Scholar 

  • Zhang, J. Z. & Reisner, E. Advancing photosystem II photoelectrochemistry for semi-artificial photosynthesis. Nat. Rev. Chem. 4, 6–21 (2020).

    CAS 

    Google Scholar 

  • King, P. W. Semi-synthetic strategy. Nat. Energy 3, 921–922 (2018).

    Google Scholar 

  • Léger, C. & Bertrand, P. Direct electrochemistry of redox enzymes as a tool for mechanistic studies. Chem. Rev. 108, 2379–2438 (2008).

    Google Scholar 

  • Saar, K. L. et al. Enhancing power density of biophotovoltaics by decoupling storage and power delivery. Nat. Energy 3, 75–81 (2018).

    CAS 

    Google Scholar 

  • Wey, L. T. et al. The development of biophotovoltaic systems for power generation and biological analysis. ChemElectroChem 6, 5375–5386 (2019).

    CAS 

    Google Scholar 

  • Zhang, J. Z. et al. Photoelectrochemistry of photosystem II in vitro vs in vivo. J. Am. Chem. Soc. 140, 6–9 (2018).

    CAS 

    Google Scholar 

  • McCormick, A. J. et al. Biophotovoltaics: oxygenic photosynthetic organisms in the world of bioelectrochemical systems. Energy Environ. Sci. 8, 1092–1109 (2015).

    CAS 

    Google Scholar 

  • Bradley, R. W., Bombelli, P., Lea-Smith, D. J. & Howe, C. J. Terminal oxidase mutants of the cyanobacterium Synechocystis sp. PCC 6803 show increased electrogenic activity in biological photo-voltaic systems. Phys. Chem. Chem. Phys. 15, 13611–13618 (2013).

    CAS 

    Google Scholar 

  • Sekar, N., Jain, R., Yan, Y. & Ramasamy, R. P. Enhanced photo-bioelectrochemical energy conversion by genetically engineered cyanobacteria. Biotechnol. Bioeng. 113, 675–679 (2016).

    CAS 

    Google Scholar 

  • Liu, C., Dasgupta, N. P. & Yang, P. Semiconductor nanowires for artificial photosynthesis. Chem. Mater. 26, 415–422 (2014).

    CAS 

    Google Scholar 

  • Mersch, D. et al. Wiring of photosystem II to hydrogenase for photoelectrochemical water splitting. J. Am. Chem. Soc. 137, 8541–8549 (2015).

    CAS 

    Google Scholar 

  • Wijnhoven, J. E. & Vos, W. L. Preparation of photonic crystals made of air spheres in titania. Science 281, 802–804 (1998).

    CAS 

    Google Scholar 

  • Liu, Y. et al. Macroporous indium tin oxide electrode layers as conducting substrates for immobilization of bulky electroactive guests. Electrochim. Acta 140, 108–115 (2014).

    CAS 

    Google Scholar 

  • Riedel, M. & Lisdat, F. Integration of enzymes in polyaniline-sensitized 3D inverse opal TiO2 architectures for light-driven biocatalysis and light-to-current conversion. ACS Appl. Mater. Interfaces 10, 267–277 (2018).

    CAS 

    Google Scholar 

  • Xia, L. et al. Zinc oxide inverse opal electrodes modified by glucose oxidase for electrochemical and photoelectrochemical biosensor. Biosens. Bioelectron. 59, 350–357 (2014).

    CAS 

    Google Scholar 

  • Arsenault, E., Soheilnia, N. & Ozin, G. A. Periodic macroporous nanocrystalline antimony-doped tin oxide electrode. ACS Nano 5, 2984–2988 (2011).

    CAS 

    Google Scholar 

  • Wenzel, T., Härtter, D., Bombelli, P., Howe, C. J. & Steiner, U. Porous translucent electrodes enhance current generation from photosynthetic biofilms. Nat. Commun. 9, 1299 (2018).

    Google Scholar 

  • Fang, X., Kalathil, S., Divitini, G., Wang, Q. & Reisner, E. A three-dimensional hybrid electrode with electroactive microbes for efficient electrogenesis and chemical synthesis. Proc. Natl Acad. Sci. USA 117, 5074–5080 (2020).

    CAS 

    Google Scholar 

  • Sturmberg, B. C. P. et al. Modal analysis of enhanced absorption in silicon nanowire arrays. Opt. Express 19, A1067–A1081 (2011).

    CAS 

    Google Scholar 

  • Ali, M. et al. Nanostructured photoelectrochemical solar cell for nitrogen reduction using plasmon-enhanced black silicon. Nat. Commun. 7, 11335 (2016).

    CAS 

    Google Scholar 

  • Wang, K., Chang, Y.-H., Zhang, C. & Wang, B. Conductive-on-demand: tailorable polyimide/carbon nanotube nanocomposite thin film by dual-material aerosol jet printing. Carbon 98, 397–403 (2016).

    Google Scholar 

  • Saleh, M. S., Li, J., Park, J. & Panat, R. 3D printed hierarchically-porous microlattice electrode materials for exceptionally high specific capacity and areal capacity lithium ion batteries. Addit. Manuf. 23, 70–78 (2018).

    CAS 

    Google Scholar 

  • Saleh, M. S., Hu, C. & Panat, R. Three-dimensional microarchitected materials and devices using nanoparticle assembly by pointwise spatial printing. Sci. Adv. 3, e1601986 (2017).

    Google Scholar 

  • Ćatić, N. et al. Aerosol-jet printing facilitates the rapid prototyping of microfluidic devices with versatile geometries and precise channel functionalization. Appl. Mater. Today 19, 100618 (2020).

    Google Scholar 

  • Jabari, E. & Toyserkani, E. Micro-scale aerosol-jet printing of graphene interconnects. Carbon 91, 321–329 (2015).

    CAS 

    Google Scholar 

  • Sukeshini, A. M. et al. Aerosol jet printing and microstructure of SOFC electrolyte and cathode layers. ECS Trans. 35, 2151 (2011).

    CAS 

    Google Scholar 

  • Kalio, A. et al. Development of lead-free silver ink for front contact metallization. Sol. Energy Mater. Sol. Cells 106, 51–54 (2012).

    CAS 

    Google Scholar 

  • Lu, S. et al. Flexible, print-in-place 1D–2D thin-film transistors using aerosol jet printing. ACS Nano 13, 11263–11272 (2019).

    CAS 

    Google Scholar 

  • Hong, K. et al. Aerosol jet printed, sub-2 V complementary circuits constructed from P- and N-type electrolyte gated transistors. Adv. Mater. 26, 7032–7037 (2014).

    CAS 

    Google Scholar 

  • Lin, J.-T. et al. A high-efficiency HIT solar cell with pillar texturing. IEEE J. Photovolt. 8, 669–675 (2018).

    Google Scholar 

  • Saini, D. K., Pabbi, S. & Shukla, P. Cyanobacterial pigments: perspectives and biotechnological approaches. Food Chem. Toxicol. 120, 616–624 (2018).

    CAS 

    Google Scholar 

  • Wey, L. T. et al. A biophotoelectrochemical approach to unravelling the role of cyanobacterial cell structures in exoelectrogenesis. Electrochim. Acta 395, 139214 (2021).

    CAS 

    Google Scholar 

  • Clifford, E. R. et al. Phenazines as model low-midpoint potential electron shuttles for photosynthetic bioelectrochemical systems. Chem. Sci. 12, 3328–3338 (2021).

    CAS 

    Google Scholar 

  • Torimura, M., Miki, A., Wadano, A., Kano, K. & Ikeda, T. Electrochemical investigation of cyanobacteria Synechococcus sp. PCC7942-catalyzed photoreduction of exogenous quinones and photoelectrochemical oxidation of water. J. Electroanal. Chem. 496, 21–28 (2001).

    CAS 

    Google Scholar 

  • Reggente, M., Politi, S., Antonucci, A., Tamburri, E. & Boghossian, A. A. Design of optimized PEDOT-based electrodes for enhancing performance of living photovoltaics based on phototropic bacteria. Adv. Mater. Technol. 5, 1900931 (2020).

    CAS 

    Google Scholar 

  • Cereda, A. et al. A bioelectrochemical approach to characterize extracellular electron transfer by Synechocystis sp. PCC6803. PLoS ONE 9, e91484 (2014).

    Google Scholar 

  • Zeng, Y. et al. Photoactive conjugated polymer-based hybrid biosystems for enhancing cyanobacterial photosynthesis and regulating redox state of protein. Adv. Funct. Mater. 31, 2007814 (2021).

    CAS 

    Google Scholar 

  • Stanier, R. Y., Kunisawa, R., Mandel, M. & Cohen-Bazire, G. Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol. Rev. 35, 171–205 (1971).

    CAS 

    Google Scholar 

  • Lea-Smith, D. J. et al. Thylakoid terminal oxidases are essential for the cyanobacterium Synechocystis sp. PCC 6803 to survive rapidly changing light intensities. Plant Physiol. 162, 484–495 (2013).

    CAS 

    Google Scholar 

  • Yang, C., Zhou, E., Miyanishi, S., Hashimoto, K. & Tajima, K. Preparation of active layers in polymer solar cells by aerosol jet printing. ACS Appl. Mater. Interfaces 3, 4053–4058 (2011).

    CAS 

    Google Scholar 

  • Fang, X. et al. Structure–activity relationships of hierarchical three-dimensional electrodes with photosystem II for semiartificial photosynthesis. Nano Lett. 19, 1844–1850 (2019).

    CAS 

    Google Scholar 

  • R Core Team R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2013).

  • Wei, T. & Simko, V. corrplot: visualization of a correlation matrix. R package version 0.84 https://github.com/taiyun/corrplot (2017).

  • Source link