Preloader

3D bioprinted silk fibroin hydrogels for tissue engineering

  • 1.

    Ng, W. L., Chua, C. K. & Shen, Y.-F. Print me an organ! Why we are not there yet. Prog. Polym. Sci. 97, 101145 (2019).

    CAS 
    Article 

    Google Scholar 

  • 2.

    Matai, I., Kaur, G., Seyedsalehi, A., McClinton, A. & Laurencin, C. T. Progress in 3D bioprinting technology for tissue/organ regenerative engineering. Biomaterials 226, 119536 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 3.

    Mandrycky, C., Wang, Z., Kim, K. & Kim, D.-H. 3D bioprinting for engineering complex tissues. Biotechnol. Adv. 34, 422–434 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 4.

    Axpe, E. & Oyen, M. L. Applications of alginate-based bioinks in 3D bioprinting. Int. J. Mol. Sci. 17, 1976 (2016).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 5.

    Shao, Z. & Vollrath, F. Surprising strength of silkworm silk. Nature 418, 741–741 (2002).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 6.

    Müller, M., Becher, J., Schnabelrauch, M. & Zenobi-Wong, M. Nanostructured pluronic hydrogels as bioinks for 3D bioprinting. Biofabrication 7, 035006 (2015).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 7.

    Wang, Z. et al. A simple and high-resolution stereolithography-based 3D bioprinting system using visible light crosslinkable bioinks. Biofabrication 7, 045009 (2015).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 8.

    Takagi, D. et al. High-precision three-dimensional inkjet technology for live cell bioprinting. Int. J. Bioprinting 5, 208 (2019).

    Article 
    CAS 

    Google Scholar 

  • 9.

    Ng, W. L., Lee, J. M., Yeong, W. Y. & Naing, M. W. Microvalve-based bioprinting–process, bio-inks and applications. Biomater. Sci. 5, 632–647 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 10.

    Guillotin, B. et al. Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31, 7250–7256 (2010).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 11.

    Ozbolat, I. T. & Hospodiuk, M. Current advances and future perspectives in extrusion-based bioprinting. Biomaterials 76, 321–343 (2016).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 12.

    Gupta, S. et al. Evaluation of silk‐based bioink during pre and post 3D bioprinting: a review. J. Biomed. Mater. Res. B Appl. Biomater. 109, 279–293 (2021).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 13.

    Singh, Y. P., Bandyopadhyay, A. & Mandal, B. B. 3D bioprinting using cross-linker-free silk–gelatin bioink for cartilage tissue engineering. ACS Appl. Mater. Interfaces 11, 33684–33696 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 14.

    Ng, W. L. et al. Vat polymerization-based bioprinting—process, materials, applications and regulatory challenges. Biofabrication 12, 022001 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 15.

    Zhang, J., Hu, Q., Wang, S., Tao, J. & Gou, M. Digital light processing based three-dimensional printing for medical applications. Int. J. Bioprinting 6, 242 (2020).

    Article 
    CAS 

    Google Scholar 

  • 16.

    Wu, C., Wang, B., Zhang, C., Wysk, R. A. & Chen, Y.-W. Bioprinting: an assessment based on manufacturing readiness levels. Crit. Rev. Biotechnol. 37, 333–354 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 17.

    Kim, S. H. et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing. Nat. Commun. 9, 1620 (2018).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 18.

    Lu, Y., Mapili, G., Suhali, G., Chen, S. & Roy, K. A digital micro‐mirror device‐based system for the microfabrication of complex, spatially patterned tissue engineering scaffolds. J. Biomed. Mater. Res. A 77, 396–405 (2006).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 19.

    Zhu, W. et al. 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 40, 103–112 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 20.

    Grogan, S. P. et al. Digital micromirror device projection printing system for meniscus tissue engineering. Acta Biomater. 9, 7218–7226 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 21.

    Lin, H. et al. Application of visible light-based projection stereolithography for live cell-scaffold fabrication with designed architecture. Biomaterials 34, 331–339 (2013).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 22.

    Lam, T. et al. Photopolymerizable gelatin and hyaluronic acid for stereolithographic 3D bioprinting of tissue‐engineered cartilage. J. Biomed. Mater. Res. B Appl. Biomater. 107, 2649–2657 (2019).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 23.

    Soman, P., Chung, P. H., Zhang, A. P. & Chen, S. Digital microfabrication of user‐defined 3D microstructures in cell‐laden hydrogels. Biotechnol. Bioeng. 110, 3038–3047 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 24.

    Zhang, A. P. et al. Rapid fabrication of complex 3D extracellular microenvironments by dynamic optical projection stereolithography. Adv. Mater. 24, 4266–4270 (2012).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 25.

    Melke, J., Midha, S., Ghosh, S., Ito, K. & Hofmann, S. Silk fibroin as biomaterial for bone tissue engineering. Acta Biomater. 31, 1–16 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 26.

    Ju, H. W. et al. Silk fibroin based hydrogel for regeneration of burn induced wounds. Tissue Eng. Regen. Med. 11, 203–210 (2014).

    CAS 
    Article 

    Google Scholar 

  • 27.

    Qi, Y. et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures. Int. J. Mol. Sci. 18, 237 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 28.

    Kim, S. H., Kim, D. Y., Lim, T. H. & Park, C. H. Silk fibroin bioinks for digital light processing (DLP) 3D bioprinting. Adv. Exp. Med. Biol. 1249, 53–66 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 29.

    Kambe, Y. et al. Beta-sheet content significantly correlates with the biodegradation time of silk fibroin hydrogels showing a wide range of compressive modulus. Polym. Degrad. Stab. 179, 109240 (2020).

    CAS 
    Article 

    Google Scholar 

  • 30.

    Cao, Z., Chen, X., Yao, J., Huang, L. & Shao, Z. The preparation of regenerated silk fibroin microspheres. Soft Matter 3, 910–915 (2007).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 31.

    Sheikh, F. A. et al. 3D electrospun silk fibroin nanofibers for fabrication of artificial skin. Nanomed. Nanotechnol. Biol. Med. 11, 681–691 (2015).

    CAS 
    Article 

    Google Scholar 

  • 32.

    Lee, J. M. et al. Artificial auricular cartilage using silk fibroin and polyvinyl alcohol hydrogel. Int. J. Mol. Sci. 18, 1707 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 33.

    Kim, J.-H. et al. Osteoinductive silk fibroin/titanium dioxide/hydroxyapatite hybrid scaffold for bone tissue engineering. Int. J. Biol. Macromol. 82, 160–167 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 34.

    Chung, E. J., Ju, H. W., Park, H. J. & Park, C. H. Three‐layered scaffolds for artificial esophagus using poly (ɛ‐caprolactone) nanofibers and silk fibroin: An experimental study in a rat model. J. Biomed. Mater. Res. A 103, 2057–2065 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 35.

    Lee, M. C. et al. Fabrication of silk fibroin film using centrifugal casting technique for corneal tissue engineering. J. Biomed. Mater. Res. B Appl. Biomater. 104, 508–514 (2016).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 36.

    Hong, H. et al. Digital light processing 3D printed silk fibroin hydrogel for cartilage tissue engineering. Biomaterials 232, 119679 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar 

  • 37.

    Wang, Q., Han, G., Yan, S. & Zhang, Q. 3D printing of silk fibroin for biomedical applications. Materials 12, 504 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 38.

    Oliveira, J. M. et al. Current and future trends of silk fibroin-based bioinks in 3D printing. J. 3D Print. Med. 4, 69–73 (2020).

    CAS 
    Article 

    Google Scholar 

  • 39.

    Das, S. et al. Bioprintable, cell-laden silk fibroin–gelatin hydrogel supporting multilineage differentiation of stem cells for fabrication of three-dimensional tissue constructs. Acta Biomater. 11, 233–246 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 40.

    Shi, W. et al. Structurally and functionally optimized silk‐fibroin–gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo. Adv. Mater. 29, 1701089 (2017).

    Article 
    CAS 

    Google Scholar 

  • 41.

    Sharma, A. et al. Investigating the role of sustained calcium release in silk-gelatin-based three-dimensional bioprinted constructs for enhancing the osteogenic differentiation of human bone marrow derived mesenchymal stromal cells. ACS Biomater. Sci. Eng. 5, 1518–1533 (2019).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 42.

    Mehrotra, S. et al. Nonmulberry silk based ink for fabricating mechanically robust cardiac patches and endothelialized myocardium‐on‐a‐chip application. Adv. Funct. Mater. 30, 1907436 (2020).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 43.

    Zheng, Z. et al. 3D bioprinting of self‐standing silk‐based bioink. Adv. Healthc. Mater. 7, 1701026 (2018).

    Article 
    CAS 

    Google Scholar 

  • 44.

    Nguyễn, T.T., Ratanavaraporn, J. & Yodmuang, S. Alginate-silk fibroin bioink: a printable hydrogel for tissue engineering. in 2019 12th Biomedical Engineering International Conference (BMEiCON) 1–4 (IEEE, 2019).

  • 45.

    Compaan, A. M., Christensen, K. & Huang, Y. Inkjet bioprinting of 3D silk fibroin cellular constructs using sacrificial alginate. ACS Biomater. Sci. Eng. 3, 1519–1526 (2017).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 46.

    Jiang, J.-P. et al. Three-dimensional bioprinting collagen/silk fibroin scaffold combined with neural stem cells promotes nerve regeneration after spinal cord injury. Neural Regen. Res. 15, 959 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 47.

    Lee, H. et al. Fabrication of micro/nanoporous collagen/dECM/silk-fibroin biocomposite scaffolds using a low temperature 3D printing process for bone tissue regeneration. Mater. Sci. Eng. C. 84, 140–147 (2018).

    CAS 
    Article 

    Google Scholar 

  • 48.

    Na, K. et al. Effect of solution viscosity on retardation of cell sedimentation in DLP 3D printing of gelatin methacrylate/silk fibroin bioink. J. Ind. Eng. Chem. 61, 340–347 (2018).

    CAS 
    Article 

    Google Scholar 

  • 49.

    Kwak, H., Shin, S., Lee, H. & Hyun, J. Formation of a keratin layer with silk fibroin-polyethylene glycol composite hydrogel fabricated by digital light processing 3D printing. J. Ind. Eng. Chem. 72, 232–240 (2019).

    CAS 
    Article 

    Google Scholar 

  • 50.

    Shin, S., Kwak, H. & Hyun, J. Melanin nanoparticle-incorporated silk fibroin hydrogels for the enhancement of printing resolution in 3D-projection stereolithography of poly (ethylene glycol)-tetraacrylate bio-ink. ACS Appl. Mater. Interfaces 10, 23573–23582 (2018).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 51.

    Lee, H., Shin, D., Shin, S. & Hyun, J. Effect of gelatin on dimensional stability of silk fibroin hydrogel structures fabricated by digital light processing 3D printing. J. Ind. Eng. Chem. 89, 119–127 (2020).

    CAS 
    Article 

    Google Scholar 

  • 52.

    Piluso, S. et al. Rapid and cytocompatible cell-laden silk hydrogel formation via riboflavin-mediated crosslinking. J. Mater. Chem. B 8, 9566–9575 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 53.

    Lee, O. J. et al. Biodegradation behavior of silk fibroin membranes in repairing tympanic membrane perforations. J. Biomed. Mater. Res. A 100, 2018–2026 (2012).

    PubMed 
    Article 
    CAS 
    PubMed Central 

    Google Scholar 

  • 54.

    Yoshimizu, H. & Asakura, T. Preparation and characterization of silk fibroin powder and its application to enzyme immobilization. J. Appl. Polym. Sci. 40, 127–134 (1990).

    CAS 
    Article 

    Google Scholar 

  • 55.

    Park, Y. R. et al. Three-dimensional electrospun silk-fibroin nanofiber for skin tissue engineering. Int. J. Biol. Macromol. 93, 1567–1574 (2016).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 56.

    Park, H. J. et al. Fabrication of 3D porous silk scaffolds by particulate (salt/sucrose) leaching for bone tissue reconstruction. Int. J. Biol. Macromol. 78, 215–223 (2015).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 57.

    Irawan, V., Sung, T.-C., Higuchi, A. & Ikoma, T. Collagen scaffolds in cartilage tissue engineering and relevant approaches for future development. Tissue Eng. Regen. Med. 15, 673–697 (2018).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 58.

    Miyaguchi, Y. & Hu, J. Physicochemical properties of silk fibroin after solubilization using calcium chloride with or without ethanol. Food Sci. Technol. Res. 11, 37–42 (2005).

    CAS 
    Article 

    Google Scholar 

  • 59.

    Zhang, X., Reagan, M. R. & Kaplan, D. L. Electrospun silk biomaterial scaffolds for regenerative medicine. Adv. Drug Deliv. Rev. 61, 988–1006 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 60.

    Tao, H. et al. Inkjet printing of regenerated silk fibroin: from printable forms to printable functions. Adv. Mater. 27, 4273–4279 (2015).

    CAS 
    Article 

    Google Scholar 

  • 61.

    Sashina, E., Bochek, A., Novoselov, N. & Kirichenko, D. Structure and solubility of natural silk fibroin. Russ. J. Appl. Chem. 79, 869–876 (2006).

    CAS 
    Article 

    Google Scholar 

  • 62.

    Gulrez, S. K. H., Al-Assaf, S. & Phillips, G. O. Hydrogels: methods of preparation, characterisation and applications. in Progress in Molecular and Environmental Bioengineering: From Analysis and Modeling to Technology Applications, 117–150 (IntechOpen, 2011).

  • 63.

    Nguyen, T. P. et al. Silk fibroin-based biomaterials for biomedical applications: a review. Polymers 11, 1933 (2019).

    CAS 
    PubMed Central 
    Article 

    Google Scholar 

  • 64.

    Sun, M. et al. Synthesis and properties of gelatin methacryloyl (GelMA) hydrogels and their recent applications in load-bearing tissue. Polymers 10, 1290 (2018).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 65.

    Reis, A. V. et al. Reaction of glycidyl methacrylate at the hydroxyl and carboxylic groups of poly (vinyl alcohol) and poly (acrylic acid): is this reaction mechanism still unclear? J. Org. Chem. 74, 3750–3757 (2009).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 66.

    Wang, Z., Jin, X., Dai, R., Holzman, J. F. & Kim, K. An ultrafast hydrogel photocrosslinking method for direct laser bioprinting. RSC Adv. 6, 21099–21104 (2016).

    CAS 
    Article 

    Google Scholar 

  • 67.

    Vashist, A. et al. Bioresponsive injectable hydrogels for on-demand drug release and tissue engineering. Curr. Pharm. Des. 23, 3595–3602 (2017).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 68.

    Kim, S. H. et al. Rapidly photocurable silk fibroin sealant for clinical applications. NPG Asia Mater. 12, 1–16 (2020).

    CAS 
    Article 

    Google Scholar 

  • 69.

    Naresh, K. & Utpal, B. Silk fibroin in tissue engineering. Adv. Healthc. Mater. 1, 393–412 (2012).

    Article 
    CAS 

    Google Scholar 

  • 70.

    Kim, S. H. et al. 4D-bioprinted silk hydrogels for tissue engineering. Biomaterials 260, 120281 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 71.

    Ajiteru, O. et al. A 3D printable electroconductive biocomposite bioink based on silk fibroin-conjugated graphene oxide. Nano Lett. 20, 6873–6883 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 72.

    Van Den Bulcke, A. I. et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels. Biomacromolecules 1, 31–38 (2000).

    Article 
    CAS 

    Google Scholar 

  • 73.

    Yue, K. et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. Biomaterials 73, 254–271 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 74.

    Li, X., Zhang, J., Kawazoe, N. & Chen, G. Fabrication of highly crosslinked gelatin hydrogel and its influence on chondrocyte proliferation and phenotype. Polymers 9, 309 (2017).

    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 75.

    Kim, H. et al. Effect of silk fibroin molecular weight on physical property of silk hydrogel. Polymer 90, 26–33 (2016).

    CAS 
    Article 

    Google Scholar 

  • 76.

    Ozbas, B., Kretsinger, J., Rajagopal, K., Schneider, J. P. & Pochan, D. J. Salt-triggered peptide folding and consequent self-assembly into hydrogels with tunable modulus. Macromolecules 37, 7331–7337 (2004).

    CAS 
    Article 

    Google Scholar 

  • 77.

    Ladner-Keay, C. L., Griffith, B. J. & Wishart, D. S. Shaking alone induces de novo conversion of recombinant prion proteins to β-sheet rich oligomers and fibrils. PloS One 9, e98753 (2014).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 78.

    Kim, U.-J. et al. Structure and properties of silk hydrogels. Biomacromolecules 5, 786–792 (2004).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 79.

    Xu, H., Casillas, J., Krishnamoorthy, S. & Xu, C. Effects of Irgacure 2959 and lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate on cell viability, physical properties, and microstructure in 3D bioprinting of vascular-like constructs. Biomed. Mater. 15, 055021 (2020).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 80.

    Fairbanks, B. D., Schwartz, M. P., Bowman, C. N. & Anseth, K. S. Photoinitiated polymerization of PEG-diacrylate with lithium phenyl-2, 4, 6-trimethylbenzoylphosphinate: polymerization rate and cytocompatibility. Biomaterials 30, 6702–6707 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 81.

    Xu, L., Sheybani, N., Yeudall, W. A. & Yang, H. The effect of photoinitiators on intracellular AKT signaling pathway in tissue engineering application. Biomater. Sci. 3, 250–255 (2015).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 82.

    Wray, L. S. et al. Effect of processing on silk‐based biomaterials: reproducibility and biocompatibility. J. Biomed. Mater. Res. B Appl. Biomater. 99, 89–101 (2011).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar 

  • 83.

    Kim, J. et al. Comparison of methods for the repair of acute tympanic membrane perforations: silk patch vs. paper patch. Wound Repair Regen. 18, 132–138 (2010).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 84.

    Zhang, F. et al. Silk dissolution and regeneration at the nanofibril scale. J. Mater. Chem. B 2, 3879–3885 (2014).

    CAS 
    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 85.

    Gupta, D., Agrawal, A., Chaudhary, H., Gulrajani, M. & Gupta, C. Cleaner process for extraction of sericin using infrared. J. Clean. Prod. 52, 488–494 (2013).

    CAS 
    Article 

    Google Scholar 

  • 86.

    Dou, H. & Zuo, B. Effect of sodium carbonate concentrations on the degumming and regeneration process of silk fibroin. J. Text. Inst. 106, 311–319 (2015).

    CAS 
    Article 

    Google Scholar 

  • 87.

    You, R., Zhang, Y., Liu, Y., Liu, G. & Li, M. The degradation behavior of silk fibroin derived from different ionic liquid solvents. Natural Science 5, 10–19 (2013).

    CAS 
    Article 

    Google Scholar 

  • 88.

    Murphy, A. R. & Kaplan, D. L. Biomedical applications of chemically-modified silk fibroin. J. Mater. Chem. 19, 6443–6450 (2009).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 89.

    Mondal, M., Trivedy, K. & Nirmal, K. S. The silk proteins, sericin and fibroin in silkworm, Bombyx mori Linn., a review. Caspian. J. Environ. Sci. 5, 63–76 (2007).

    Google Scholar 

  • 90.

    Nichol, J. W. et al. Cell-laden microengineered gelatin methacrylate hydrogels. Biomaterials 31, 5536–5544 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar 

  • 91.

    Yadav, D. & Gaikwad, A. Comparison and testing of tensile strength for low & medium carbon steel. Int. J. Mech. Eng. 4, 1–8 (2015).

    Google Scholar 

  • 92.

    Fergg, F., Keil, F. & Quader, H. Investigations of the microscopic structure of poly (vinyl alcohol) hydrogels by confocal laser scanning microscopy. Colloid Polym. Sci. 279, 61–67 (2001).

    CAS 
    Article 

    Google Scholar 

  • 93.

    Lee, J. S. et al. 3D-printable photocurable bioink for cartilage regeneration of tonsil-derived mesenchymal stem cells. Addit. Manuf. 33, 101136 (2020).

    CAS 

    Google Scholar 

  • 94.

    Steehler, M. K., Hesham, H. N., Wycherly, B. J., Burke, K. M. & Malekzadeh, S. Induction of tracheal stenosis in a rabbit model—endoscopic versus open technique. Laryngoscope 121, 509–514 (2011).

    PubMed 
    Article 
    PubMed Central 

    Google Scholar 

  • 95.

    Den Hondt, M., Vanaudenaerde, B. M., Delaere, P. & Vranckx, J. J. Twenty years of experience with the rabbit model, a versatile model for tracheal transplantation research. Plast. Aesthetic Res. 3, 223–230 (2016).

    Article 

    Google Scholar 

  • Source link